
1 / 102

 Source: UIC

 Date: 11/12/2024

 Reference: FRMCS FFFIS-7950

 Version: 2.0.0

 No of pages: 107

FRMCS FFFIS

Form Fit Functional Interface
Specification

2 / 102

ISBN 978-2-7461-3120-0

Warning

No part of this publication may be copied, reproduced or distributed by any means whatsoever, including electronic,

except for private and individual use, without the express permission of the International Union of Railways (UIC).

The same applies for translation, adaptation or transformation, arrangement or reproduction by any method or

procedure whatsoever. The sole exceptions – noting the author’s name and the source –are “analyses and brief

quotations justified by the critical, argumentative, educational, scientific or informative nature of the publication into

which they are incorporated” (Articles L 122-4 and L122-5 of the French Intellectual Property Code).

© International Union of Railways (UIC) – Paris, 2024

3 / 102

Document history

Version Date Details

0.0.1 24.02.2021 Creation of the document

0.0.2 to 0.0.8 08.07.2021 Interim internal versions

0.0.9 13.07.2021 First version reviewed internally

0.0.10 23.07.2021 Add description of API features

0.0.11 28.07.2021 Modifications after first review with industries

0.0.12 29.07.2021 Modifications after additional review with industries

0.1.0 02.08.2021 Draft for Review (S2R Consortium)

0.1.1 08.10.2021 Interim version including all comments received from S2R

0.1.2 16.11.2021 Interim version with consolidation of content

0.1.3 22.11.2021 Modifications after internal review

0.2.0 22.11.2021 Second Draft for Review (S2R Consortium)

0.2.1 08.12.2021 Modifications to reflect all S2R Consortium comments

0.2.2 16.12.2021 Modifications after internal review

0.3.0 17.12.2021 Stable FFFIS draft content mainly applicable to OBAPP for last consortium

review

0.3.1 18.01.2022 Modifications after comments received from Kontron

0.4.0 21.01.2022 Final FFFIS draft with content mainly applicable to OBAPP.

For ERA EECT Review as official deliverable of SC3/SC4

0.4.1 29.03.2022 Update to take into account EECT comments

0.4.2 15/04/2022 Clarification of API parameters and update to reflect EECT comments

(06/04/22)

0.5.0 06/05/2022 Consolidated FFFIS final draft to consider EECT review comments and API

parameters evolutions

0.5.1 10/06/2022 Consolidation of IP negotiation parameters during Session start

0.6.0 30/06/2022 Consolidated FFFIS final draft to consider EECT review comments (round #3)

and IP negotiation evolutions

0.6.1 2/08/2022 Update of API parameter structure and main comments from EECT

0.7.0 19/08/2022 Consolidated FFFIS with parameters and API messages encoded in ASN.1

format

0.7.1 23/09/2022 Consolidated FFFIS following open points resolutions work frame

0.8.0 27/09/2022 Update to take into account EECT review comments (09/09)

0.9.0 11/10/2022 Amendments from last EECT review round (EECT meeting on 7/10/2022)

0.10.0 18/10/2022 Amendments from last EECT review round (EECT meeting on 18/10/2022)

1.0.0 12/02/2023 Modifications proposed by ERA through “agency consistency check on FIS

and FFFIS” document and new Annex added to present the "Interoperability

requirements in EU” coming from “Agency proposal for categorisation

annexes for RMR Baseline 0” document.

4 / 102

Version Date Details

1.1.0 29/03/2024 Release delivery to ERA.

1.2.0 10/05/2024 First delivery to EECT Review

1.2.1 27/09/2024 Second delivery to EECT Review + ASN1 syntax corrections

1.2.2 12/11/2024 Third delivery to EECT Review + editorials including ASN1 syntax corrections

1.2.3 26/11/2024 Forth delivery to EECT Review (alignment due to comments #104 and #105

within Subset-037-3 review sheet)

2.0.0 11/12/2024 Delivery to ERA for FRMCS v2, including the editorial changes requested by

ERA.

5 / 102

Table of Contents

1 List of abbreviations ... 8
2 List of definitions .. 9
3 References .. 11

3.1 Applicability ... 11

3.2 List of References ... 11

4 Introduction .. 12

4.1 Purpose of this document ... 12

4.2 Scope of this document .. 12

4.3 Categorization of requirements ... 14

5 General principles .. 15

5.1 OBAPP: Interface between On-Board Applications(s) and On-Board FRMCS 15

5.2 API Functions supported through the OBAPP interface ... 15

5.3 TSAPP: Interface between Trackside Applications(s) and FRMCS Trackside

Gateway .. 16

5.4 API Functions supported through the TSAPP interface ... 16

5.5 <Intentionally Deleted> ... 18

5.6 FRMCS Service session in Tight Coupled mode ... 18

5.7 FRMCS Service session in Loose Coupled mode ... 19

6 Performance and Security ... 20

6.1 OBAPP Performance requirements ... 20

6.2 <Intentionally Deleted> ... 20

6.3 OBAPP Security requirements .. 20

6.4 TSAPP Performance requirements .. 20

6.5 <Intentionally Deleted> ... 20

6.6 TSAPP Security requirements ... 21

6.7 TLS requirements ... 21

7 OBAPP Low layers specifications and protocol stacks .. 22

7.1 <Intentionally Deleted> ... 22

7.2 OBAPP Physical interface ... 22

7.3 OBAPP Internet Protocol versions ... 22

7.4 OBAPP local IP allocation scheme .. 22

7.5 <Intentionally Deleted> ... 22

8 TSAPP Low layers specifications and protocol stacks ... 23

8.1 TSAPP Connectivity .. 23

8.2 TSAPP Physical interface .. 23

8.3 TSAPP Internet Protocol versions ... 23

6 / 102

8.4 TSAPP local IP allocation scheme ... 23

8.5 <Intentionally Deleted> ... 23

9 OBAPP API Services ... 24

9.1 Overview of OBAPP API features .. 24

9.2 <Intentionally Deleted> ... 26

9.3 <Intentionally Deleted> ... 26

9.4 Definition of the parameters used in the API services ... 26

9.5 API URI ... 28

9.6 API version ... 29

9.7 Http and SSE usage ... 29

9.8 Resource names and HTTP methods ... 29

9.9 API version service ... 31

9.10 Local registration services ... 31

9.11 Notification services .. 33

9.12 Session services ... 40

9.13 Keep alive service ... 46

9.14 <Intentionally Deleted> ... 46

9.15 API support by On-Board FRMCS and On-Board Applications 46

9.16 <Intentionally Deleted> ... 48

9.17 <Intentionally Deleted> ... 48

10 TSAPP API Services .. 49

10.1 Overview of TSAPP API features .. 49

10.2 Definition of the parameters used in the API services ... 50

10.3 API URI ... 52

10.4 API version ... 53

10.5 Http and SSE usage ... 53

10.6 Resource names and HTTP methods ... 53

10.7 API version service ... 55

10.8 Local registration services ... 55

10.9 Notification services .. 57

10.10 Session services ... 60

10.11 Keep alive service ... 65

10.12 <Intentionally Deleted> ... 65

10.13 API support by FRMCS Trackside Gateway and Trackside Applications 65

10.14 <Intentionally Deleted> ... 66

10.15 <Intentionally Deleted> ... 66

11 <Intentionally Deleted> .. 67

7 / 102

Annex A. (Normative) ASN.1 notations of OBAPP parameters 68

A.1 Basic Data Types .. 68

A.2 OBapp parameters .. 68

A.3 Data structures within OBapp message body text ... 72

Annex B. (Normative) ASN.1 notations of TSAPP parameters 77

B.1 Basic Data Types .. 77

B.2 TSAPP parameters .. 77

B.3 Data structures within TSAPP message body text ... 79

Annex C. (Informative) Yaml codes of OBAPP ... 83
Annex D. Interoperability requirements in EU .. 102

8 / 102

1 List of abbreviations

3GPP 3rd Generation Partnership Project

API Application Programming Interface

ATO Automatic Train Operation

CP Control Plane

ERTMS European Rail Traffic Management System

ETCS European Train Control System

FRMCS Future Railway Mobile Communication System

GW Gateway

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IP Internet Protocol

MCX 3GPP Mission Critical Services

OB On-Board

OBAPP On-Board Application reference point/interface

QoS Quality of service

SIP Session Initiation Protocol

SSE Server Sent Event

TCMS Train Control and Management System

TLS Transport Layer Security

TOBA Telecom On-Board Architecture

TS Trackside

TSAPP Trackside Application reference point/interface

TSI Technical Specification for Interoperability

TSI CCS Control Command and Signalling TSI

UIC Union Internationale des Chemins de Fer

UP User Plane

9 / 102

2 List of definitions

Application

Provides a solution for a specific communication need that is necessary for

railway operations. In the context of this document, an application interfaces

with the On-Board FRMCS through the OBAPP reference point and with FRMCS

Trackside Gateway through the TSAPP reference point.

Control Plane

The Control Plane (CP) carries signalling traffic between the network entities.

Control plane and User Plane are to be considered independently of one

another and can accordingly be managed separately between entities.

FRMCS Domain

 A FRMCS Domain is an administrative domain which comprises a Service
Domain and a Transport Domain under the control of an FRMCS Operator.

FRMCS System

 Telecommunication system conforming to FRMCS specifications.

FRMCS Service client

 Client that enables the use of the Communication Services and/or
Complementary Services for the railway applications.

FRMCS Service server

 Server that enables the use of the Communication Services and/or
Complementary Services for the railway applications.

On-Board FRMCS

System enabling FRMCS communication to on-board applications. The On-

Board FRMCS achieves a decoupling between On-Board Application(s) and

transport service. For some applications, the decoupling is also achieved for

the communication service.

FRMCS Trackside Gateway

 System enabling FRMCS communication to trackside applications. The

Trackside FRMCS achieves a decoupling between Trackside Application(s)

and transport service. For some applications, the decoupling is also achieved

for the communication service.

Interface

 In this FFFIS, Interface and Reference Point describe the same notion, where

Reference Point is used when discussing architecture, whereas Interface is the

word used for the specification.

Low Layers

10 / 102

 The term “low layers” corresponds to the OSI (Open Systems Interconnection)

layers below the Application layer in the context of this FFFIS.

Lower Layers

 The term “lower layers” originates from the UNIFE Working Group “FRMCS

Lower Layers Requirements” and corresponds to the OSI layers 3 and below

in the context of an on-board common bus.

Reference Point

 Conceptual point applicable for interaction between functional services that

enables authorised functions, e.g. in the network, to access their services. In

this FFFIS, Interface and Reference Point describe the same notion, where

Reference Point is used when discussing architecture, whereas Interface is the

word used for the specification.

Transport service

It is a service that provides transport of user information and control signals

between corresponding reference points considering the required QoS for the

individual communication.

User Plane

The User Plane (UP) carries the user/application traffic. For the exchange of

information between the communication partners (payload), the User Plane

provides the necessary formats in order to provide the desired quality. Voice,

video and data require different formats, for instance Codec to enable

communication between partners. This is determined by the corresponding

User Plane instance on the application side and controlled accordingly.

11 / 102

3 References

3.1 Applicability

3.1.1.1 References are either specific (identified by date of publication, edition number,

version number, etc.) or non-specific.

3.1.1.2 For a specific reference, subsequent revisions do not apply.

3.1.1.3 For a non-specific reference, the latest version applies.

3.2 List of References

[FRMCS-FRS] UIC, FRMCS, Functional Requirements Specification, FU-7120

[FRMCS-SRS] UIC, FRMCS, System Requirements Specification, FW-AT-7800

[TOBA-FRS] UIC, FRMCS, On-Board FRMCS – Functional Requirements
Specification, TOBA-7510

[FRMCS-FIS] UIC, FRMCS, Functional Interface Specification, FIS-7970

[SUBSET-147] UNISIG ERTMS/ETCS and ATO over ETCS – FFFIS part:
Communication Layers

[RFC 9113] Hypertext Transfer Protocol Version 2 (HTTP/2) specifications.

[RFC 8259] The JavaScript Object Notation (JSON) Data Interchange Format.

[RFC 4122] A Universally Unique IDentifier (UUID) URN Namespace.

[RFC 1166] Internet Numbers.

[RFC 5952] A recommendation for IPv6 address text representation.

[RFC 3986] Uniform Resource Identifier (URI): Generic Syntax.

[RFC 8446] The Transport Layer Security (TLS) Protocol Version 1.3.

[3GPP TS 29.571] 5G System; Common Data Types for Service Based Interfaces;

Stage 3.

[3GPP TS 29.500] 5G System; Technical Realization of Service Based Architecture;
Stage 3.

[3GPP TS 23.032] Universal Geographical Area Description (GAD).

12 / 102

4 Introduction

4.1 Purpose of this document

4.1.1 This Form Fit Functional Interface Specification (FFFIS) specifies the following

interfaces: (I)

4.1.1.1 OBAPP, reference point between the On-Board Applications and the On-Board

FRMCS, which is defined in [FRMCS-SRS],

4.1.1.2 and TSAPP, reference point between the FRMCS Trackside Gateway and the

Trackside Applications, which is defined in [FRMCS-SRS].

4.1.2 Figure 1 below is a simplified FRMCS architecture. It depicts the main high-level

functional blocks and indicates the location of the OBAPP and TSAPP interfaces. (I)

Note: the difference between Interface and Reference Point is given in chapter 2 (List

of definitions).

4.2 Scope of this document

4.2.1 This FFFIS specifies the protocols, the messages and the format of the information

exchanged over the OBAPP and TSAPP interfaces which enable interfacing between

applications and the FRMCS System. (I)

4.2.2 This FFFIS cannot be used separately as the FRMCS specifications ([FRMCS-FRS],

[FRMCS-SRS], [FRMCS-FIS] and [TOBA-FRS]) have to be considered as a whole.

(I)

Figure 4-1: Positions of OBAPP and TSAPP interfaces

13 / 102

4.2.3 This FFFIS is part of the FRMCS specifications as depicted in Figure 4-2: (I)

4.2.4 The performance and security requirements applicable to OBAPP and TSAPP

interfaces are defined in chapter 6. (I)

4.2.5 An On-Board Application interfacing On-Board FRMCS uses the low layers defined

in chapter 7. This FFFIS does not assume a train common bus in all cases (named

Ethernet Consist Network in TSI CCS), but only refers to [SUBSET-147] for the case

there is a common bus or when some specific requirements in [SUBSET-147] to be

used by this specification even in case of absence of common bus deployment. (I)

4.2.6 A Trackside Application interfacing the FRMCS Trackside Gateway uses the low

layers defined in chapter 8 (I).

4.2.7 The On-Board FRMCS exposes the API defined in chapter 9 to On-Board

applications. (I)

4.2.8 The FRMCS Trackside Gateway exposes the API defined in chapter 10 to Trackside

applications. (I)

Figure 4-2: FRMCS specifications

14 / 102

4.3 Categorization of requirements

4.3.1 The requirements are categorised as follows (I):

4.3.1.1 Mandatory for the System (indicated by ‘(M)’ at the end of the clause). These

requirements mean a condition set out in this specification that must be met without

exception in order to deliver a system ensuring the fulfilment of essential functional

and system needs, compliance to relevant standards and technical integration. The

mandatory requirements are identified as sentences using the keyword “shall”.

4.3.1.2 Optional for the system (indicated by ‘(O)’ at the end of the clause). These

requirements may be used based on the implementers’ choice. When an option is

selected, the related requirement(s) of this specification becomes mandatory for the

system. The optional requirements are identified as sentences using the keyword

“should”.

4.3.1.3 Information (indicated by “(I)” at the end of the clause). These statements provide

additional information to help the reader understanding a requirement.

4.3.2 The following marking is applied to denote the applicability of clauses: (I)
a) Indications (M), (O) and (I) are used for clauses within the scope of the V2

specification, which is the minimum set of requirements for validation;

b) Indications (M-V3), (O-V3) and (I-V3) are used for clauses within the scope

of the V3 specification. The V3 series of specifications are the target version

to be included in the TSI, to allow migration from the GSM-R system to the

FRMCS system (FRMCS 1st edition). The V3 clauses are to be considered

for information for V2;

c) Indications (M-Vx), (O-Vx) and (I-Vx) are used for clauses for a later version

of the specification. These clauses are kept in the specification for

readability and consistency purposes;

d) Indications (M-V3), (O-V3), (I-V3) and (M-Vx), (O-Vx), (I-Vx) may also be

used for sub bullets within a clause to identify a different applicability. In this

case each bullet will be indicated individually.

15 / 102

5 General principles

Note: this chapter is for information purpose only. It provides a description of the

FRMCS messages going through the OBAPP and TSAPP leading to a better

understanding of the different modes to be supported. The FRMCS end-to-end

information is provided in the FRMCS Functional Interface Specifications [FRMCS-

FIS].

5.1 OBAPP: Interface between On-Board Applications(s) and On-Board
FRMCS

5.1.1 The OBAPP corresponds to the interface between the On-Board Application(s) and the

On-Board FRMCS. This interface ensures management of and access to the

communication services allowing the authentication, authorisation, priority and quality

of service profile management requested by those applications. (I)

Note: information regarding the authentication and authorisation mechanisms can be

found in the section 6.3.

5.1.2 User Plane data from and to the application(s) is carried over the OBAPP interface. (I)

5.1.3 Control Plane data exchange between application and On-Board FRMCS is performed

over the OBAPP interface. (I)

5.2 API Functions supported through the OBAPP interface

5.2.1 The OBAPP Control Plane exposes three main functions: (I)

5.2.1.1 Local Binding function: The Local Binding function provides functionalities to

establish a secure link between an On-Board Application and the On-Board FRMCS,

ensuring mutual authentication of both parties through the OBAPP as well as the

integrity and confidentiality of the information exchanges related to the OBAPP Control

Plane. The Local Binding function is spread over several mechanisms described in

section 6.3 for the OBAPP Security requirements and in chapter 9 for the API services,

namely, the local registration and opening the notification event stream;

5.2.1.2 Session function: The Session function provides functionalities to establish or

terminate connectivity to or from a remote end point for applications operating in

Loose Coupled mode. It is implemented through the API Service session features

described in chapter 9;

16 / 102

5.2.1.3 Auxiliary/Notification function: This function enables the applications to subscribe /

unsubscribe to one or more notification channel(s) (e.g., location reporting

notifications, etc) exposed by the On-Board FRMCS.. The Notification function is

implemented through the API notification services described in chapter 9.

5.3 TSAPP: Interface between Trackside Applications(s) and FRMCS
Trackside Gateway

5.3.1 The TSAPP corresponds to the interface between the Trackside Application(s) and the

FRMCS Trackside Gateway. This interface ensures management of and access to the

communication services allowing the authentication, authorisation, priority and quality

of service profile management requested by those applications. (I)

5.3.2 User Plane data from and to the application(s) is carried over the TSAPP interface. (I)

5.3.3 Control Plane data exchange between application and FRMCS Trackside Gateway is

performed over the TSAPP interface. (I)

5.4 API Functions supported through the TSAPP interface

5.4.1 The TSAPP Control Plane exposes three main functions: (I)

5.4.1.1 Local Binding function: The Local Binding function provides functionalities to

establish a secure link between a Trackside Application and the FRMCS Trackside

Gateway, ensuring mutual authentication of both parties through the TSAPP as well

as the integrity and confidentiality of the information exchanges related to the TSAPP

Control Plane. The Local Binding function is spread over several mechanisms

described in section 0 for the TSAPP Security requirements and in chapter 10 for the

API services, namely, the local registration and opening the notification event stream;

5.4.1.2 Session function: The Session function provides functionalities to establish or

terminate connectivity to or from a remote end point for applications operating in

Figure 5-1: API features exposed by the OBAPP Control Plane interface

17 / 102

Loose Coupled mode. It is implemented through the API Service session features

described in chapter 10;

5.4.1.3 Auxiliary/Notification function: This function enables applications to subscribe /

unsubscribe to one or more notification channel(s) exposed by the FRMCS Trackside

Gateway. The API notification service is described in chapter 10.

18 / 102

5.5 <Intentionally Deleted>

5.6 FRMCS Service session in Tight Coupled mode

Note: The figure below depicts the Service session exchanges in Tight Coupled

mode. The Local Binding function, Notification function and SIP Core are not shown

in the figure.

5.6.1 In Tight Coupled mode, after the Local Binding (see section 5.2.1) has been

successfully performed, the embedded MCX client of the application performs the

subsequent 3GPP MCX protocol exchanges over the IP interface of OBAPP / TSAPP.

(I)

5.6.2 In Tight Coupled mode, the Application User Plane is also carried out over the IP

interface of OBAPP / TSAPP. (I)

Figure 5-2: End-to-End Service session for Applications in Tight coupled mode

19 / 102

5.7 FRMCS Service session in Loose Coupled mode

Note: The figure below depicts the Service session exchanges in Loose Coupled

mode The Local Binding function, Notification function and SIP Core are not shown

in this figure.

5.7.1 In Loose Coupled mode, after the Local Binding (see sections 5.2.1 and 5.4.1) has

been successfully performed, the Application requests the FRMCS Domain to

establish a logical Application Control Plane based on 3GPP MCX on its behalf. It does

so by calling a dedicated application interface (API) exposed by the On-Board FRMCS

or by the FRMCS Trackside Gateway. The features supported by this API are

described in the API Services chapters (refer to chapter 9 and section 10). The On-

Board FRMCS and FRMCS Trackside Gateway are in charge to translate these API

calls into the relevant of 3GPP MCX procedures with the necessary information. (I)

5.7.2 In Loose Coupled mode, the Application User Plane is carried out through the OBAPP

and TSAPP over IP. (I)

Figure 5-3: End-to-End Service session for Applications in Loose coupled mode

20 / 102

6 Performance and Security

This chapter provides the requirements in terms of performance and security for both

OBAPP and TSAPP.

6.1 OBAPP Performance requirements

6.1.1 The physical layer of the OBAPP interface at On-Board FRMCS side supports the

minimum gross data rate defined for layer 1 of Ethernet Consist Network (CCS) in

[SUBSET-147] (see clause 7.2.2). (I)

6.2 <Intentionally Deleted>

6.3 OBAPP Security requirements

6.3.1 If an FRMCS On-Board is connected to an Ethernet Consist Network compliant with

[SUBSET-147], the interface shall comply with the authentication mechanisms

specified in [SUBSET-147]. (M)

6.3.2 On the OBAPP Control Plane, a mutual authentication based on client and server

certificates shall be performed between the application and the On-Board FRMCS

using the Transport Layer Security (TLS) protocol. During the TLS handshake, client

(application) and server (On-Board FRMCS) send their certificate and authenticate

themselves. (M)

6.3.3 The integrity and confidentiality protection of the OBAPP Control Plane implemented

through the API features shall rely on the Transport Layer Security (TLS) protocol. (M)

6.3.4 The TLS end points shall support TLS 1.3. ([RFC 8446]). (M)

6.4 TSAPP Performance requirements

6.4.1 The data rate on TSAPP interface depends essentially on 1) the size of the operated

railway infrastructure and the traffic volume, 2) whether the load is distributed over

multiple FRMCS Trackside Gateways. This is fully dependant on implementation

choice of the Railway infrastructure manager and is outside the scope of this FFFIS.

(I)

6.5 <Intentionally Deleted>

21 / 102

6.6 TSAPP Security requirements

6.6.1 On the TSAPP Control Plane, a mutual authentication based on client and server

certificates shall be performed between the application and the FRMCS Trackside

Gateway using the Transport Layer Security (TLS) protocol. During the TLS

handshake, client (application) and server (FRMCS Trackside Gateway) send their

certificate and authenticate themselves. (M)

6.6.2 The integrity and confidentiality protection of the TSAPP Control Plane implemented

through the API features shall rely on the Transport Layer Security (TLS) protocol. (M)

6.6.3 The TLS end points shall support TLS 1.3 ([RFC 8446]). (M)

6.7 TLS requirements

6.7.1 The OBAPP shall satisfy the TLS requirements in this clause. (M-V3)

6.7.2 The TSAPP shall satisfy the TLS requirements in this clause. (M-V3)

22 / 102

7 OBAPP Low layers specifications and protocol stacks

7.1 <Intentionally Deleted>

7.2 OBAPP Physical interface

7.2.1 The physical interface of the OBAPP at On-Board FRMCS side is made of common off-

the-shelf technologies based on Ethernet (IEEE 802.3). (I)

7.2.2 The physical interface of the OBAPP at On-Board FRMCS side shall comply with layers

1 and 2 requirements of Ethernet Consist Network (CCS) in [SUBSET-147]. (M)

7.3 OBAPP Internet Protocol versions

7.3.1 <intentionally deleted>

7.3.2 <intentionally deleted>

7.3.2i The support of IP versions exposed by On-Board FRMCS on OBapp shall comply

with [FRMCS-SRS] requirements in section 6.5.1. (M)

7.4 OBAPP local IP allocation scheme

7.4.1 At the OBAPP interface side, the On-Board FRMCS is seen as a host in the train network

and hence it shall be configured in accordance with the IP plan of the train network.

7.4.2 The On-Board FRMCS shall expose on OBAPP an IP interface with IP address(es) that

can be used by the On-Board Application to send/receive OBAPP User Plane and

Control Plane data. (M)

7.5 <Intentionally Deleted>

23 / 102

8 TSAPP Low layers specifications and protocol stacks

8.1 TSAPP Connectivity

8.1.1 The Trackside Applications need to have connectivity to use the FRMCS Trackside

Gateway. This connectivity can be established according to different technical choices

depending on which device/entity the application is installed, e.g. commercial off-the-

shelf (COTS) computer, proprietary fixed equipment. It depends also on the location

of the physical Application entities and Trackside FRMCS. (I)

8.1.2 The communication network architecture and distance between the Trackside

Application and the FRMCS Trackside Gateway are fully dependant on

implementation choice of the Railway infrastructure manager. This is outside the

scope of this FFFIS. (I)

8.1.3 In case the application does not support TSAPP requirements (physical and/or logical),

an agent supporting TSAPP is used in between to connect to the FRMCS Trackside

Gateway. The physical and logical interface specifications between the application and

agent are outside the scope of the FRMCS specifications. (I)

8.2 TSAPP Physical interface

8.2.1 The physical interface of the TSAPP at FRMCS Trackside Gateway side is made of

common off-the-shelf technologies based on Ethernet (IEEE 802.3). (I)

8.2.2 The TSAPP interface supports the following physical interface requirements: (I)

• links over copper twisted-pair cable or over fiber-optical cable

• standardized physical connectors, for instance RJ45 or M12 in case of

twisted-pair cable or 10GBASE-SR or LR connector in case of fiber-optical

cable.

8.3 TSAPP Internet Protocol versions

8.3.1 <intentionally deleted>

8.3.2 <intentionally deleted>

8.3.2i The support of IP versions exposed by FRMCS Trackside Gateway on TSapp shall

comply with [FRMCS-SRS] requirements in section 6.5.1. (M)

8.4 TSAPP local IP allocation scheme

8.4.1 The FRMCS Trackside Gateway shall expose on TSAPP an IP interface with an IP

gateway address that can be used by the Trackside Applications to send/receive TSAPP

User Plane and Control Plane data. (M)

8.5 <Intentionally Deleted>

24 / 102

9 OBAPP API Services

9.1 Overview of OBAPP API features

OBAPP enables the following services between an application and the On-Board

FRMCS:

9.1.1 API version: This OBAPP service is used by On-Board Application to obtain the list of

API version(s) supported by the On-Board FRMCS. (I)

9.1.2 Local registration: This OBAPP service is used to perform the Local registration

between an On-Board Application and the On-Board FRMCS. (I)

9.1.3 Local deregistration: This OBAPP service is used to request a local de-registration of

the On-Board Application from the On-Board FRMCS. (I)

9.1.4 Session opening: This OBAPP service is used to establish a session between an On-

Board Application and a remote (Trackside or On-Board) application at the initiative of

the On-Board Application. (I)

9.1.5 Incoming Session acceptance: This OBAPP service is used as a part of the

establishment of a session between an On-Board Application and a remote (Trackside

or On-Board) application at the initiative of the remote application. (I)

9.1.6 Session closure: This OBAPP service is used to close a session between an On-Board

Application and a remote application. (I)

9.1.7 Session status: This OBAPP service is used to provide the status of a session involving

the On-Board Application (I)

9.1.8 Subscription to notification event stream: This feature is used to request the

opening of an event stream enabling On-Board FRMCS to send notifications to the

On-Board Application after the local registration. This is done during the local binding.

(I)

9.1.9 General notification: upon On-Board Application’s subscription to notification event

stream, the On-Board Application receive a set of general notifications which are linked

to the following events: (I)

• Incoming session request: The On-Board FRMCS notifies the On-Board

Application of the reception of an incoming (On-Board terminated) session

request.

• Final answer of a session initiation: the On-Board FRMCS notifies the On-

Board Application of whether the establishment of the E2E communication

session at the initiative of the On-Board Application was successful / failed /

declined.

• Availability of FRMCS Transport Domain (FTD): the On-Board FRMCS

notifies the On-Board Application of the availability of FRMCS Transport

Domain.

• Availability of FRMCS Service Domain (FSD): the On-Board FRMCS notifies

the On-Board Application of the availability of FRMCS Service Domain.

• Session closure notification: The On-Board FRMCS notifies the On-Board

Application of the closure of an open session over OBAPP.

25 / 102

• Upcoming deregistration notification: The On-Board FRMCS notifies the On-

Board Application of an imminent deregistration of On-Board FRMCS (e.g.,

as a preparation for a train turnoff).

Note: These notifications do not require an explicit subscription from application and

are implicitly included in the subscription to the notification event stream.

9.1.10 Subscription/Unsubscription to a notification channel: the On-Board FRMCS

exposes notification channel(s) to which the On-Board Application can subscribe /

unsubscribe. Upon a subscription, the On-Board Application receives the notifications

corresponding to that specific channel on the notification event stream which is opened

during the local binding. (I)

9.1.11 Location reporting notification: this notification channel on OBAPP is used by On-

Board Application to subscribe to the location change notifications in one or several of

the following manner: (I)

• Periodic location reporting with a given time interval.

• Location reporting at the occurrence of a cell change.

• Location reporting at each interval of travelled distance.

Note: in the context of the API, the term application refers to the application instance,

which is a concrete running software occurrence of an application of a specific type.

9.1.12 The completion of Local Binding shall imply the successful execution of the following

steps: (M)

(i) The first step in which an application and the On-Board FRMCS shall mutually

authenticate using TLS, which is not part of the API. See section 6.3 for more

details;

(ii) And the second step in which an application, through API local registration

service, request a registration to the On-Board FRMCS. The success

response from On-Board FRMCS completes this step;

(iii) And the third step in which the On-Board application subscribes to the

notification event stream. The success response from On-Board FRMCS

completes this step.

9.1.13 The invocation of any API services beside API versions, local registration, and

opening of notification event stream is conditioned on the successful execution of the

Local Binding steps. (I)

9.1.14 Mandatory OBAPP API services for different types of applications are covered in

section 9.15. (I)

26 / 102

9.2 <Intentionally Deleted>

9.3 <Intentionally Deleted>

9.4 Definition of the parameters used in the API services

9.4.1 A comprehensive description of attributes and some basic data types used for OBAPP

API services are provided in informative tables, Table 9-1 and Table 9-2,

respectively. The data types are formally defined in ASN.1 format in the normative

Annex A. (I)

Attribute name Description

1 appCategory Provides the category of the Application. The value is taken out of an enumerated list of
application categories which includes at least standardised categories (e.g., etcs, ato, vas,
tcms) defined in this document. This enumerated list can be extended with other (non-
standardised) application categories per railway infrastructure manager’s or railway
undertaking’s use, This parameter is a local attribute which can be used by FRMCS to
decide how an application can be served..

2 staticId Unique identifier of the Application within the scope of an On-Board FRMCS.

3 dynamicId Identifier of the application instance dynamically assigned at the On-Board FRMCS,
unique in the scope of the On-Board FRMCS. The format is a Universally Unique Identifier
(UUID) version 4, as described in IETF [RFC 4122].

4 apiVersion The API version of OBAPP used by On-Board Application, as a part of API URI. The API
version is in format v{MAJOR}.{MINOR}, as defined in clause 9.6. The default value is set
to “v1.0”.

5 supportedVersionsList List of supported API versions of OBAPP by On-Board FRMCS. The API version is in
format v{MAJOR}.{MINOR}, as defined in clause 9.6.

6 couplingMode The application coupling mode (i.e. Loose coupled, Tight coupled)..

7 uriResource The resource field in the http error response.

8 cause The machine-readable failure cause in the http failure response.

9 detail The human-readable failure cause in the http failure response.

10 recipient The remote recipient of a session originated by On-Board Application. This parameter is
constituted of the address of the remote recipient.

11 sessionsList List of session IDs of the sessions which are open for a given dynamicId.

12 sessionId Identifier of the session, unique in the scope of the On-Board FRMCS per dynamicId. The
format shall be a Universally Unique Identifier (UUID) version 4, as described in
IETF [RFC 4122].

13 remoteId Remote identifier of an application in the scope of session exchange messages.

14 sessionStatus The status of a session indicating one of the following three cases: a) the E2E session is
succeeded, b) the E2E session is failed, c) the E2E session is declined.

15 nextHopIPAddress Local On-Board FRMCS IP address to be used by the On-Board Application as local next
hop IP address for the User Plane data in case of successful session establishment.

16 destApplicationIPAddr
ess

The FRMCS IP address of destination application endpoint to be used by the On-Board
Application as destination address for the User Plane data in case of successful session
establishment.

17 communicationCatego
ry

This parameter reflects the different categories of communication (session) that can be
established over the FRMCS for a given application. This parameter is used by the On-
Board FRMCS to initiate an end-to-end session. Based on this parameter, the On-Board
FRMCS assigns the right communication profile including the QoS level to the session.

18 localAppIPAddress Local Application IP address to be used by the On-Board FRMCS as destination address
for the User Plane data in case of successful session establishment.

19 sessionOriginator The origin of a session A session on OBAPP is either originated by the On-Board
Application or is an incoming session which is terminated at On-Board Application.

20 channel A notification channel which is exposed by On-Board FRMCS e.g., for location update
notifications.

21 period Requested update period for the location reporting notification in seconds, defaulting at
infinity, if not present. This element specifies the minimum wait period between
consecutive location reports.

22 distance Strictly positive integer number of meters and defaulting at infinity, if not present. This
element is used in the decision of sending a location report based on travelled distance,
and specifies the minimum required distance, between the current location and the
location of the most recent sending of a location report.

27 / 102

Table 9-1: Definition of the parameter types that are used in the API request / response

Type Name Description

Uuid
The format shall be a Universally Unique Identifier (UUID) version 4, as described
in IETF [RFC 4122].

Ipv4Addr
String identifying a IPv4 address formatted in the "dotted decimal" notation as
defined in IETF [RFC 1166].

Pattern: '^(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-

9][0-9]|2[0-4][0-9]|25[0-5])$'

Ipv6Addr
String identifying an IPv6 address formatted according to clause 4 of
IETF [RFC 5952]. The mixed IPv4 IPv6 notation according to clause 5 of
IETF [RFC 5952] shall not be used.
Pattern: '^((:|(0?|([1-9a-f][0-9a-f]{0,3}))):)((0?|([1-9a-f][0-9a-f]{0,3})):){0,6}(:|(0?|([1-
9a-f][0-9a-f]{0,3})))$'
And Pattern: '^((([^:]+:){7}([^:]+))|((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))$'

Uri
String providing an URI formatted according to IETF [RFC 3986].

If the URI fields intended to convey generic data (e.g., in the value part of a query
parameter, or in the URI path segments) contain reserved characters, these
reserved characters shall be percent-encoded as defined in clause 5.2.10.2 of
[3GPP TS 29.500].

Table 9-2: Basic Data Types

23 subscriptionId The identity of the notification subscription, which is allocated by On-Board FRMCS,
unique in the scope of the On-Board FRMCS per dynamicId.

24 locReportType Location reporting type which is one of the followings: a) periodic, b)distance travelled, c)
cell change.

25 ftdAVL FALSE if FRMCS Transport Domain (FTD) is not available, TRUE if FTD is available.

26 fsdAVL FALSE if FRMCS Service Domain (FSD) is not available, TRUE if FSD is available.

27 nwTransiiton TRUE if the ftdAVL or fsdAVL event is due is network transition, FALSE otherwise.

28 incomingSessionAppR
esponse

Application response to an incoming session which is one the followings: a) accepted, b)
rejected.

29 frmcsDomain The Target FRMCS Transport Domain of the network transition. This is a string
representing the PlmnId in the format “{mcc}-{mnc}” as defined in [3GPP TS 29.571] Table
5.4.2-1.

30 servingCellId The serving Cell ID within FRMCS Transport Domain. This is a string in the format
“{PlmnId}.{NrCellID}”, where PlmnId and NrCellID are as defined in [3GPP TS 29.571]
Table 5.4.2-1.

31 longitude The longitude as a constituent of Train Geographic 2D Position. The geographical
longitude as defined in [3GPP TS 23.032] clause 6.1.

32 latitude The latitude as a constituent of Train Geographic 2D Position. The geographical longitude
as defined in [3GPP TS 23.032] clause 6.1.

33 horizontalAccuracy The Accuracy of the Train Geographic 2D Position (horizontal accuracy). The
geographical longitude as defined in [3GPP TS 23.032] clause 6.2b.

34 gnssInformation This attribute regroups the following information elements of the GNSS coordinate:
longitude, latitude, horizontalAccuracy, speed, speedAccuracy, and direction.

35 timeStamp The time stamp of location report. A string with format DateTime as defined in [3GPP TS
29.571] Table 5.2.2-1.

36 speed It represents the train speed. The speed as defined in [3GPP TS 23.032] clause 8.7. This
is an integer between 0 and 216-1.

37 speedAccuracy It represents the train speed accuracy. The speed as defined in [3GPP TS 23.032] clause
8.11. This is an integer between 0 and 28-1.

38 direction It represents the train bearing. The direction as defined in [3GPP TS 23.032] clause 8.8.
This is an integer between 0 and 359 (degree).

39 timeToDeregistration This allows to indicate to the application with which delay (in seconds) after the reception
of the upcomingDeregistrationNotif the On-Board FRMCS will turn off.

28 / 102

9.4.2 The OBAPP interface to the On-Board FRMCS will have different versions as new

features will be introduced. Supported versions are communicated over the OBAPP.

For each interface version, a change log is maintained, and changes are categorised

into Major and Minor categories. (I)

9.4.3 The OBAPP API versioning is defined in clause 9.6. (I)

9.4.3i For an OBAPP API implemented according to the present FFFIS, the API version shall

be set to v0.1. (M)

9.4.4 The dynamicId, sessionId, and subscriptionId shall be random cryptographic

identities generated by On-Board FRMCS at runtime. (M)

9.4.5 The appCategory, as defined in Annex B, allows a list of both harmonized and non-

harmonized applications. (I)

9.4.6 The field name for non-harmonized applications within appCategory shall include a

prefix “ext.”, indicating non-harmonized extension of the application list. (M)

9.4.7 The static identifier of the application shall be unique in the scope of all FRMCS

application instances within an On-Board FRMCS. The structure of FRMCS System

identities that are used to set up the relevant FRMCS services and communication

link(s) with other FRMCS users shall fulfil the requirements as specified in the

[FRMCS-SRS]. (M)

9.4.8 The remote address of an application in the scope of OBAPP session exchange

messages shall fulfil the requirements as specified in the [FRMCS-SRS] section

11.6.5. (M)

9.5 API URI

9.5.1 The API URI of the OBAPP APIs shall be:

{apiRoot}/<apiName>/<apiVersion>/<ResourceName>, with the following

components:

• The {apiRoot} shall be set as “https://{localIdApiRoot}”. (M)

• The <apiName> shall be "obapp". (M)

• The <apiVersion> shall be set to “{apiVersion}” (see details in clause 9.6). (M)

• The <ResourceName> shall be set as described in clause 9.8.2. (M)

9.5.2 The localIdApiRoot is of string type with value being deployment-specific, such as the

IP address of the On-Board FRMCS within the train IP network or a locally resolvable

FQDN (if the train is equipped with a DNS server). (I)

29 / 102

9.6 API version

9.6.1 API version (represented by ApiVersion data type) shall be a string with format

“v{MAJOR}.{MINOR}”. (M)

9.6.2 The 1st Field (MAJOR) and the 2nd Field (MINOR) shall contain unsigned integer

numbers, and they shall not contain leading zeroes. (M)

9.6.3 Given the format of API version, the version increments follow the rules defined in the

following clauses. (I)

9.6.4 The 1st Field (MAJOR) shall be incremented only if the applied change is backward

incompatible relative to the earlier, i.e. frozen version of the API. (M)

9.6.5 For a non-frozen API, the first backwards incompatible change(s) relative to the

latest frozen version triggers incrementing the 1st Field (MAJOR), while subsequent

backwards incompatible changes do not increment the value, until the API stays

non-frozen. When the (MAJOR) field is incremented the (MINOR) field will be reset

to 0. (I)

9.6.6 The 2nd Field (MINOR) shall be incremented only if the applied change is a

backward compatible new feature relative to the earlier, i.e. frozen version of the API.

(M)

9.6.7 For a non-frozen API, the first backwards compatible change(s) relative to the latest

frozen version triggers incrementing the 2nd Field (MINOR), while subsequent

backwards compatible changes do not increment the value, until the API stays non-

frozen. (I)

9.6.8 An On-Board Application which wants to communicate with On-Board FRMCS will

priorly request the supported API version(s) by On-Board FRMCS as defined in

clause 9.9. The On-Board Application will then use its selected API version among

the list communicated by On-Board FRMCS as the apiVersion in the URI path of the

subsequent requests. (I)

9.7 Http and SSE usage

9.7.1 HTTP/2, as defined in [RFC 9113], shall be used. (M)

9.7.2 The data contained in the body of HTTP request, HTTP response, and in the Data

filed of SSE message shall be encoded in JSON as specified in [RFC 8259]. (M)

9.7.3 The use of the JSON format shall be signalled by the content type "application/json".

(M)

9.8 Resource names and HTTP methods

30 / 102

9.8.1 Figure below describes the resource URI structure of the OBAPP API. (I)

9.8.2 Table below provides an overview of the resources’ names and applicable HTTP

methods. (I)

Endpoint Method Purpose

/versions GET Obtain supported API versions by the On-Board FRMCS

/registrations POST Register an application

/registrations/{dynamicId} DELETE De-register an application

/sessions/{dynamicId} GET List of sessions for an application

POST Create a session for an application

/sessions/{dynamicId}/{sessionId} GET Get information on a session of an application

PUT Accept an incoming session for an application

DELETE Terminate a session for an application

/notifications/{dynamicId}/events GET Subscribe to the event stream to receive notifications

/notifications/{dynamicId}/channels GET Obtain list of notifications to which application has

subscriptions

 DELETE Unsubscribe all the notification channels (except the

default notifications linked to the event stream)

/notifications/{dynamicId}/channels/l

ocation

POST Subscribe to the location reporting channel

DELETE Unsubscribe from a specific channel for an application

31 / 102

/notifications/{dynamicId}/channels/{

subscriptionId}

DELETE Unsubscribe from a specific notification subscription

/keepalive/{dynamicId} GET Request a life signal from On-Board FRMCS

9.9 API version service

9.9.1 This API service allows an On-Board Application to obtain the supported version(s)

of API by On-Board FRMCS and can be invoked without local registration. (I)

9.9.2 The On-Board Application shall send a GET request to the {apiRoot}/obapp/versions

endpoint. (M)

9.9.3 On success, 200” (OK) shall be returned with ApiVersionsData content as defined in

Annex A. (M)

9.9.4 The On-Board Application shall utilise one of the API versions among the list of

supported versions by On-Board FRMCS as the apiVersion in the API URI (see

clause 9.5.1) of its subsequent requests. (M)

9.10 Local registration services

9.10.1 Register an On-Board Application

9.10.1.1 This API service allows an On-Board Application to register to the On-Board

FRMCS and to obtain a unique identity (i.e., dynamicId) to be used in the API URI

path of the subsequent requests. (I)

32 / 102

9.10.1.2 The On-Board Application shall send a POST request to the /registrations endpoint.

(M)

9.10.1.3 The On-Board Application shall send RegisterData content as defined in Annex A

in the POST request.(M)

9.10.1.4 On success, 201 (Created) shall be returned, with Location header set to the URI of

the registered application instance. (M)

9.10.1.5 The 201 (Created) response shall contain RegisteredData structure as defined in

Annex A. (M)

9.10.1.6 On failure, one of the HTTP status codes listed in Table 9-3 shall be returned. (M)

9.10.1.7 For a 4xx, the message body shall contain a RegisterErrorData structure as defined

in Annex A. (M)

9.10.1.8 In the RegisterErrorData of HTTP failure response, the uriResource shall be set to

the revoked URI resource, and cause shall be set to the values in one of the rows

of Table 9-3. (M)

Table 9-3.Data structures supported by the POST Response Body

9.10.2 De-Register an On-Board Application

9.10.2.1 The On-Board Application shall send a DELETE request to the

/registrations/{dynamicId} endpoint. (M)

9.10.2.2 On success, 204 (No Content) shall be returned. (M)

9.10.2.3 On failure, one of the HTTP status code listed in Table 9-4 shall be returned. (M)

Data type P Response
codes

Description

RegisteredData M 201 Created Successful.

RegisterErrorData M 400 Bad Request The “cause” attribute shall be set to the following:
- ILL_FORMED_REQUEST

The “detail” attribute can provide more details in a
human-readable format.

RegisterErrorData M 403 Forbidden The “cause” attribute shall be set to the followingError! R
eference source not found.:

- UNAUTHORIZED

The “detail” attribute can provide more details in a
human-readable format.

33 / 102

9.10.2.4 For a 4xx, the message body shall contain a DeRegisterErrorData structure as

defined in Annex A. (M)

9.10.2.5 In the DeRegisterErrorData of HTTP failure response, the uriResource shall be set

to the revoked URI resource, and cause shall be set to the values in one of the

rows of Table 9-4. (M)

Table 9-4. Data structures supported by the DELETE Response Body

9.11 Notification services

9.11.1 Opening the notification event stream for an application

9.11.1.1 As a part of local binding an application subscribes to a notification event stream as

defined in this clause. This notification event stream receives general notifications

as well as the notifications from the notification channels to which the application is

explicitly subscribed (e.g., clause 9.11.3). (I)

9.11.1.2 The subscription to a notification event stream implicitly includes the subscription to

a set of general notifications of the following types: OpenSessionFinalAnswerNotif

(see clause 9.11.1.9), IncomingSessionNotif (see clause 9.11.1.10), FtdAvlNotif

(see clause 9.11.1.11), FsdAvlNotif (see clause 9.11.1.12), SessionClosureNotif

(see clause 9.11.1.13) and UpcomingDeregistrationNotif (see clause 9.11.1.14). (I)

9.11.1.3 The On-Board Application shall send a GET request to the

/notifications/{dynamicId}/events endpoint. The following headers shall be set: (M)

• accept: text/event-stream

Data type P Response
codes

Description

N/A M 204 No Content Successful.

DeRegisterErrorData M 401 Unauthorized The “cause” attribute shall be set to the following:
- UNREGISTERED

The “detail” attribute can provide more details in a human-
readable format.

DeRegisterErrorData M 404 Not Found The “cause” attribute shall be set to the following:

- NOT_FOUND

The “detail” attribute can provide more details in a human-
readable formatError! Reference source not found..

34 / 102

• cache-control: no-cache

9.11.1.4 On success, 200 (OK) shall be returned, the following headers shall be set: (M)

• content-type: text/event-stream

9.11.1.5 On failure, one of the HTTP status code listed in Table 9-5 shall be returned. (M)

9.11.1.6 For a 4xx, the message body shall contain a EventStreamErrorData structure as

defined in Annex A. (M)

9.11.1.7 In the EventStreamErrorData of HTTP failure response, the uriResource shall be

set to the revoked URI resource, and cause shall be set to the values in one of the

rows of Table 9-5. (M)

Table 9-5. Data structures supported by the GET Response Body

9.11.1.8 Following a successful subscription of an application to the notification event

stream, the On-Board FRMCS shall send the SSE messages with the following

field: (M)

• data: A JSON object of the type ObEventType as defined in Annex A.

9.11.1.9 General event type “openSessionFinalAnswerNotif”

9.11.1.9.1 The openSessionFinalAnswerNotif notifies to the application one of the 3

following statuses of E2E session: successful or failed or declined. (I)

9.11.1.9.2 If the notification concerns a successful status, the SSE message for

openSessionFinalAnswerNotif event shall contain a

OpenSessionFinalAnswerNotifSuccessData structure as defined in Annex A.(M)

9.11.1.9.3 If the notification concerns a declined status, The SSE message for

openSessionFinalAnswerNotif event shall contain a

OpenSessionFinalAnswerNotifDeclinedData structure as defined in Annex A and

with cause set to one of the values in the corresponding row in Table 9-6. (M)

Data type P Response
codes

Description

N/A M 200 OK Successful.

EventStreamErrorD
ata

M 401
Unauthorised

The “cause” attribute shall be set tothe followings: Error! R
eference source not found.

- UNREGISTERED

The “detail” attribute can provide more details in a
human-readable format .

EventStreamErrorD
ata

M 403 Forbidden The “cause” attribute shall be set to the following:
- UNAUTHORIZED

The “detail” attribute can provide more details in a
human-readable formatError! Reference source not f
ound..

35 / 102

9.11.1.9.4 If the notification concerns a failed status, The SSE message for

openSessionFinalAnswerNotif event shall contain a

OpenSessionFinalAnswerNotifFailedData structure as defined in Annex A and

with cause set to one of the values in the corresponding row in Table 9-6. (M)

Table 9-6. Data structures for the SSE message OpenSessionFinalAnswerNotif

9.11.1.10 General event type “incomingSessionNotif”

9.11.1.10.1 The SSE message for incomingSessionNotif event shall contain a

IncomingSessionNotifData structure as defined in Annex A. (M)

9.11.1.11 General event type “ftdAvlNotif”

9.11.1.11.1 The SSE message for ftdAvlNotif event shall contain a FtdAvlNotifData

structure as defined in Annex A. (M)

9.11.1.12 General event type “fsdAvlNotif”

9.11.1.12.1 The SSE message for fsdAvlNotif event shall contain a FsdAvlNotifData

structure as defined in Annex A. (M)

9.11.1.13 General event type “sessionClosureNotif”

9.11.1.13.1 The SSE message for sessionClosureNotif event shall contain a

SessionClosureNotifData structure as defined in Annex A. (M)

Data type P Description

OpenSessionFinalAnswerNotif
SuccessData

M The E2E session is successful.

OpenSessionFinalAnswerNotif
FailedData

M The E2E session is failed..
The “cause” attribute shall be set to one of the followings:

- MCX_ENDPOINT_NOT_REACHABLE

- TERMINATING_APPLICATION_ENDPOINT_NOT_REACH
ABLE

- TERMINATING_APPLICATION_NOT_ALLOWED

The “detail” attribute can provide more details in a human-readable
format.

OpenSessionFinalAnswerNotif
DeclinedData

M The E2E session is declined.
The “cause” attribute shall be set to the following:

- REMOTE_ENDPOINT_DECLINED

The “detail” attribute can provide more details in a human-readable
format.

36 / 102

9.11.1.14 General event type “upcomingDeregistrationNotif”

9.11.1.14.1 The SSE message for upcomingDeregistrationNotif event shall contain a

UpcomingDeregistrationNotifData structure as defined in Annex A. (M)

9.11.2 Get information on subscriptions to notification for an application

9.11.2.1 The On-Board Application shall send a GET request to the

/notifications/{dynamicId}/channels endpoint. (M)

9.11.2.2 On success, 200 (OK) shall be returned containing the SubscriptionsListData as

defined in Annex A. (M)

9.11.2.3 On failure, one of the HTTP status codes listed in Table 9-7 shall be returned. (M)

9.11.2.4 For a 4xx, the message body shall contain a SubscriptionsListErrorData structure,

as defined in Annex A. (M)

9.11.2.5 In the SubscriptionsListErrorData of HTTP failure response, the uriResource shall be

set to the revoked URI resource, and cause shall be set to the values in one of the

rows of Table 9-7. (M)

Table 9-7. Data structures supported by the GET Response Body

Data type P Response
codes

Description

SubscriptionsListDat
a

M 200 OK Successful.

SubscriptionsListErr
orData

M 401
Unauthorised

The “cause” attribute shall be set to the following:
- UNREGISTERED

The “detail” attribute can provide more details in a
human-readable format.

SubscriptionsListErr
orData

M 403 Forbidden The “cause” attribute shall be set to the following:

- UNAUTHORIZED

The “detail” attribute can provide more details in a
human-readable format.

SubscriptionsListErr
orData

M 404 Not Found The “cause” attribute shall be set to the following:
- NOT_FOUND

The “detail” attribute can provide more details in a
human-readable format.

37 / 102

9.11.3 Subscription to location reporting channel

9.11.3.1 The On-Board Application shall send a POST request to the

/notifications/{dynamicId}/channels/location endpoint. (M)

9.11.3.2 The POST request shall contain the LocNotifReqData structure as defined on Annex

A. (M):

9.11.3.3 On success, 200 (OK) shall be returned. (M)

9.11.3.4 The “200 OK” response shall contain the LocNotifResData structure as defined in

Annex A. (M)

9.11.3.5 On failure, one of the HTTP status codes listed in Table 9-8 shall be returned.(M)

9.11.3.6 For a 4xx, the message body shall contain a LocNotifErrorData structure, as defined

in Annex A. (M)

9.11.3.7 In the LocNotifErrorData of HTTP failure response, the uriResource shall be set to

the revoked URI resource, and cause shall be set to the values in one of the rows of

Table 9-8. (M)

Table 9-8.Data structures supported by the POST Response Body

Data type P Response
codes

Description

LocNotifResData M 200 OK Successful.

LocNotifErrorData M 400 Bad Request The “cause” attribute shall be set to the following:
- ILL_FORMED_REQUEST

The “detail” attribute can provide more details in a
human-readable format.

LocNotifErrorData M 401
Unauthorised

The “cause” attribute shall be set to the following:
- UNREGISTERED

The “detail” attribute can provide more details in a
human-readable format.

LocNotifErrorData M 403 Forbidden The “cause” attribute shall be set to the following:
- UNAUTHORIZED

The “detail” attribute can provide more details in a
human-readable format.

LocNotifErrorData M 501 Not
Implemented

The “cause” attribute shall be set to the following:
- "DISTANCE_BASED_LOC_REPORT_NOT_SU

PPORTED"

The “detail” attribute can provide more details in a
human-readable format.

38 / 102

9.11.3.8 <intentionally deleted>

9.11.3.9 The SSE message for any of the locReportTypes shall contain a

LocReportNotifData structure as defined in Annex A. (M)

9.11.4 Unsubscription from notification channels

9.11.4.1 The On-Board Application shall send a DELETE request to the

/notifications/{dynamicId}/channels endpoint. (M)

9.11.4.2 On success, 204 (No Content) shall be returned. (M)

9.11.4.3 On failure, one of the HTTP status code listed in Table 9-9 shall be returned. (M)

9.11.4.4 For a 4xx, the message body shall contain a UnsubChannelsErrorData structure, as

defined in Annex A. (M)

9.11.4.5 In the UnsubChannelsErrorData of HTTP failure response, the uriResource shall be

set to the revoked URI resource, and cause shall be set to the values in one of the

rows of Table 9-9. (M)

Table 9-9.Data structures supported by the DELETE Response Body

Data type P Response
codes

Description

N/A M 204 No Content Successful.

UnsubChannelsErro
rData

M 401
Unauthorised

The “cause” attribute shall be set to the following:
- UNREGISTERED

The “detail” attribute can provide more details in a
human-readable format.

UnsubChannelsErro
rData

M 403 Not Found The “cause” attribute shall be set to the following:
- UNAUTHORIZED

The “detail” attribute can provide more details in a
human-readable format.

UnsubChannelsErro
rData

M 404 Not Found The “cause” attribute shall be set to the following:

- NOT_FOUND

The “detail” attribute can provide more details in a
human-readable format.

39 / 102

9.11.5 Unsubscription from a specific notification channel

9.11.5.0 This clause specifies how an application can unsubcribe from a notification

channel. The list of notification channels from which the application can

unsubscribe is provided by Notifchannel data type in Annex A. (I)

9.11.5.1 The On-Board Application shall send a DELETE request to the

/notifications/{dynamicId}/channels/{channel} endpoint. (M)

9.11.5.2 On success, 204 (No Content) shall be returned. (M)

9.11.5.3 On failure, one of the HTTP status code listed in Table 9-10 shall be returned. (M)

9.11.5.4 For a 4xx, the message body shall contain a UnsubNotifChannelErrorData structure,

as defined in Annex A. (M)

9.11.5.5 In the UnsubNotifChannelErrorData of HTTP failure response, the uriResource

shall be set to the revoked URI resource, and cause shall be set to the values in

one of the rows of Table 9-10. (M)

Table 9-10. Data structures supported by the DELETE Response Body

9.11.6 Unsubscription from a specific notification using subscription identity

Data type P Response
codes

Description

N/A M 204 No Content Successful.

UnsubNotifChannel
ErrorData

M 401
Unauthorised

The “cause” attribute shall be set to the following:

- UNREGISTERED

The “detail” attribute can provide more details in a
human-readable format.

UnsubNotifChannel
ErrorData

M 404 Not Found The “cause” attribute shall be set to the following:
- UNKNOWN_NOTIF_CHANNEL

The “detail” attribute can provide more details in a
human-readable format.

40 / 102

9.11.6.1 The On-Board Application shall send a DELETE request to the

/notifications/{dynamicId}/channels/{subscriptionId} endpoint. (M)

9.11.6.2 On success, 204 (No Content) shall be returned. (M)

9.11.6.3 On failure, one of the HTTP status code listed in Table 9-11 shall be returned. (M)

9.11.6.4 For a 4xx, the message body shall contain a UnsubNotificationErrorData structure

as defined in Annex A. (M)

9.11.6.5 In the UnsubNotificationErrorData of HTTP failure response, the uriResource shall

be set to the revoked URI resource, and cause shall be set to the values in one of

the rows of Table 9-11. (M)

Table 9-11. Data structures supported by the DELETE Response Body

9.12 Session services

9.12.1 Opening a session for an application

9.12.1.1 This section describes how to initiate a session for an application on OBapp. (I)

Data type P Response
codes

Description

N/A M 204 No Content Successful.

UnsubNotificationErr
orData

M 401
Unauthorised

The “cause” attribute shall be set to the following:
- UNREGISTERED

The “detail” attribute can provide more details in a
human-readable format.

UnsubNotificationErr
orData

M 404 Not Found The “cause” attribute shall be set to the following:
- UNKNOWN_SUBSCRIPTION_ID

The “detail” attribute can provide more details in a
human-readable format.

41 / 102

9.12.1.2 The On-Board Application shall send a POST request to the /sessions/{dynamicId}

endpoint. (M)

9.12.1.3 The On-Board Application shall send OBSessionOpenData content as defined in

Annex A in the POST request. (M)

Editor's Note: The combination of values provided by the Application for two attributes “appCategory” and

“communicationCategory” is mapped to the corresponding FRMCS Railway On-Board Profile (FROP) as defined

in [FRMCS SRS] section 19. For applications in the scope of [FRMCS FIS], this mapping between API attributes

and FROP will be specified in [FRMCS FIS].

9.12.1.4 On success, 201 (Session Created) shall be returned. (M)

9.12.1.5 The 201 (Session Created) response shall contain OBSessionOpenedData

structure as defined in Annex A. (M)

9.12.1.6 For a 4xx, the message body shall contain a OBSessionOpenErrorData structure as

defined in Annex A. (M)

9.12.1.7 In the OBSessionOpenErrorData of HTTP failure response, the uriResource shall

be set to the revoked URI resource, and cause shall be set to the values in one of

the rows of Table 9-12. (M)

Table 9-12.Data structures supported by the POST Response Body

Data type P Response
codes

Description

OBSessionOpened
Data

M 201 Session
Created

Successful.

OBSessionOpenErr
orData

M 400 Bad Request The “cause” attribute shall be set to the following:
- ILL_FORMED_REQUEST

The “detail” attribute can provide more details in a
human-readable format.

OBSessionOpenErr
orData

M 401
Unauthorised

The “cause” attribute shall be set to the following:

- UNREGISTERED

The “detail” attribute can provide more details in a
human-readable format.

OBSessionOpenErr
orData

M 403 Forbidden The “cause” attribute shall be set to the following:
- UNAUTHORIZED

The “detail” attribute can provide more details in a
human-readable format.

42 / 102

9.12.2 Get a session status

9.12.2.1 The On-Board Application shall send a Get request to the

/sessions/{dynamicId}/{sessionId} endpoint. (M)

9.12.2.2 On success, 200 (OK) shall be returned containing SessionStatusData structure as

defined in Annex A. (M)

9.12.2.3 On failure, one of the HTTP status codes listed in Table 9-13 shall be returned. (M)

9.12.2.4 For a 4xx, the message body shall contain a SessionStatusErrorData structure, as

defined in Annex A. (M)

9.12.2.5 In the SessionStatusErrorData of HTTP failure response, the uriResource shall be

set to the revoked URI resource, and cause shall be set to the values in one of the

rows of Table 9-13. (M)

 Table 9-13.Data structures supported by the GET Response Body

Data type P Response
codes

Description

SessionStatusData M 200 OK Successful.

SessionStatusError
Data

M 401
Unauthorised

The “cause” attribute shall be set to the following:
- UNREGISTERED

The “detail” attribute can provide more details in a
human-readable format.

SessionStatusError
Data

M 404 Not Found The “cause” attribute shall be set to the following:

- UNKNOWN_SESSION

The “detail” attribute can provide more details in a
human-readable format.

43 / 102

9.12.3 Get list of sessions for an application

9.12.3.1 The On-Board Application shall send a Get request to the /sessions/{dynamicId}

endpoint. (M)

9.12.3.2 On success, 200 (OK) shall be returned containing the SessionsListData as defined

in Annex A. (M)

9.12.3.3 On failure, one of the HTTP status codes listed in Table 9-14 shall be returned. (M)

9.12.3.4 For a 4xx, the message body shall contain a SessionsListErrorData structure, as

defined in Annex A. (M)

9.12.3.5 In the SessionsListErrorData of HTTP failure response, the uriResource shall be set

to the revoked URI resource, and cause shall be set to the values in one of the rows

of Table 9-14. (M)

Table 9-14. Data structures supported by the GET Response Body

9.12.4 Closures of a session

Data type P Response
codes

Description

SessionsListData M 200 OK Successful.

SessionsListErrorDa
ta

M 401
Unauthorised

The “cause” attribute shall be set to the following:
- UNREGISTERED

The “detail” attribute can provide more details in a
human-readable format.

SessionsListErrorDa
ta

M 404 Not Found The “cause” attribute shall be set to the following:

- NOT_FOUND

The “detail” attribute can provide more details in a
human-readable format.

44 / 102

9.12.4.1 The On-Board Application shall send a DELETE request to the

/sessions/{dynamicId}/{sessionId} endpoint. (M)

9.12.4.2 On success, 204 (No Content) shall be returned with the SessionClosedData

structure as defined in Annex A. (M)

9.12.4.3 On failure, one of the HTTP status codes listed in Table 9-15 shall be returned. (M)

9.12.4.4 For a 4xx, the message body shall contain a SessionCloseErrorData structure, as

defined in Annex A. (M)

9.12.4.5 In the SessionCloseErrorData of HTTP failure response, the uriResource shall be set

to the revoked URI resource, and cause shall be set to the values in one of the rows

of Table 9-15. (M)

Table 9-15.Data structures supported by the DELETE Response Body

Data type P Response
codes

Description

SessionCloseData M 204 No Content Successful.

SessionCloseErrorD
ata

M 401
Unauthorised

The “cause” attribute shall be set to the following:
- UNREGISTERED

The “detail” attribute can provide more details in a
human-readable format.

SessionCloseErrorD
ata

M 403 Forbidden The “cause” attribute shall be set to the following:
- UNAUTHORIZED

The “detail” attribute can provide more details in a
human-readable format.

SessionCloseErrorD
ata

M 404 Not Found The “cause” attribute shall be set to the following:
- UNKNOWN_SESSION

The “detail” attribute can provide more details in a
human-readable format.

45 / 102

9.12.5 Accept an incoming session

9.12.5.1 The On-Board Application shall send a PUT request to the

/sessions/{dynamicId}/{sessionId} endpoint containing

IncomingSessionNotificationResponseData structure as defined in Annex A. (M)

9.12.5.2 On success, one of the status codes 2xx listed in Table 9-16 shall be returned. (M)

9.12.5.3 <Intentionally Deleted>

9.12.5.4 On failure, one of the HTTP status codes listed in Table 9-16 shall be returned.

9.12.5.5 For a 4xx, the message body shall contain a

IncomingSessionNotificationResponseErrorData structure, as defined in Annex A.

(M)

9.12.5.6 In the IncomingSessionNotificationResponseErrorData of HTTP failure response, the

uriResource shall be set to the revoked URI resource, and cause shall be set to the

values in one of the rows of Table 9-16. (M)

Table 9-16.Data structures and response codes supported by the PUT Response Body

Data type P Response
codes

Description

N/A M 201 Created Sent if the application has accepted the incoming session
request.

N/A M 204 No Content Acknowledgement of the application having declined the
incoming session request.

IncomingSessionNotif
icationResponseError
Data

M 400 Bad Request The “cause” attribute shall be set to the following:
- ILL_FORMED_REQUEST

The “detail” attribute shall be set to the corresponding
description defined in.

IncomingSessionNotif
icationResponseError
Data

M 401 Unauthorised The “cause” attribute shall be set to the following:

- UNREGISTERED

The “detail” attribute can provide more details in a human-
readable format.

IncomingSessionNotif
icationResponseError
Data

M 404 Not Found The “cause” attribute shall be set to the following:
- UNKNOWN_SESSION

The “detail” attribute can provide more details in a human-
readable format.

46 / 102

9.13 Keep alive service

9.13.1 This API service allows an On-Board Application to get a life signal from On-Board

FRMCS. (I)

9.13.2 The On-Board Application shall send a GET request to the /keepalive/{dynamicId}/

endpoint. (M)

9.13.3 On success, 204 (No Content) shall be returned.

9.13.4 On failure, one of the HTTP status codes listed in Table 9-17 shall be returned. (M)

9.13.5 For a 4xx, the message body shall contain a KeepAliveErrorData structure, as

defined in Annex A. (M)

9.13.6 In the KeepAliveErrorData of HTTP failure response, the uriResource shall be set to

the revoked URI resource, and cause shall be set to the values in one of the rows of

Table 9-17. (M)

Table 9-17. Data structures supported by the GET Response Body

9.14 <Intentionally Deleted>

9.15 API support by On-Board FRMCS and On-Board Applications

9.15.1 [FRMCS SRS] section 6.1.3.1 defines for which application the OBapp is applied. (I)

9.15.2 The On-Board FRMCS shall implement and expose all API services provided for

OBapp. (M)

Data type P Response
codes

Description

NA M 204 No Content.

KeepAliveErrorData M 401
Unauthorised

The “cause” attribute shall be set to the following:
- UNREGISTERED

The “detail” attribute shall be set to the corresponding
description defined in.

47 / 102

9.15.3 The following API services shall be implemented by all On-Board Applications: (M)

• GET /versions

• POST /registrations

• GET /notifications/{dynamicId}/events

9.15.4 The following API services shall be implemented by all On-Board Loose Coupled

(LC) applications requiring OB-originated communications: (M)

• POST /sessions/{dynamicId}

• DELETE /sessions/{dynamicId}/{sessionId}

9.15.5 The following API services shall be implemented by all On-Board Loose Coupled

(LC) applications requiring OB-terminated communications: (M)

• PUT /sessions/{dynamicId}}/{sessionId}

• DELETE /sessions/{dynamicId}/{sessionId}

9.15.6 The Table 9-18 represents the mandatory part of API services for applications by “x”

(I):

Endpoint Method Purpose

All

LC (OB-

originated)

LC (OB-

terminated)

/versions GET Obtain supported API

versions by the On-Board

FRMCS

X

/registrations POST Register an application X

/registrations/{dyn

amicId}

DELETE De-register an application

/sessions/{dynami

cId}

GET List of sessions for an

application

POST Create a session for an

application

 X

/sessions/{dynami

cId}/{sessionId}

GET Get information on a session

of an application

PUT Accept an incoming session

for an application

 X

DELETE Terminate a session for an

application

 X X

/notifications/{dyn

amicId}/events

GET Subscribe to the event stream

to receive notifications

X

/

notifications/{dyna

micId}/channels

GET Obtain list of notifications to

which application has

subscriptions

 DELETE Unsubscribe all the

notification channels (except

general notifications linked to

the event stream)

48 / 102

/notifications/{dyn

amicId}/channels/l

ocation

POST Subscribe to the location

reporting channel

DELETE Unsubscribe from a specific

channel for an application

/notifications/{dyn

amicId}/channels/{

subscriptionId}

DELETE Unsubscribe from a specific

notification subscription

/keepalive/{dynam

icId}/

GET Request a life signal from On-

Board FRMCS

Table 9-18.Mandatory part of API services for different categories of application

9.16 <Intentionally Deleted>

9.17 <Intentionally Deleted>

49 / 102

10 TSAPP API Services

10.1 Overview of TSAPP API features

TSAPP enables the following services between an application and the FRMCS Trackside

Gateway:

10.1.1 API version: This TSAPP service is used by Trackside Application to obtain the list of

API version(s) supported by the FRMCS Trackside Gateway. (I)

10.1.2 Local registration service: This TSAPP service is used to perform the Local

registration between a Trackside Application and the FRMCS Trackside Gateway. (I)

10.1.3 Local deregistration service: This TSAPP service is used to request a local de-

registration of the Trackside Application from the FRMCS Trackside Gateway. (I)

10.1.4 Session opening service: This TSAPP service is used to establish a session between

a Trackside Application and a remote (Trackside or On-Board) application at the

initiative of the Trackside Application. (I)

10.1.5 Incoming session acceptance service: This TSAPP service is used as a part of the

establishment of a session between a Trackside Application and a remote (Trackside

or On-Board) application at the initiative of the remote application. (I)

10.1.6 Session closure service: This TSAPP service is used to close a session between a

Trackside Application and a remote application. (I)

10.1.7 Session status service: This TSAPP service is used to provide the status of a session

involving the Trackside Application (I)

10.1.8 Subscription to notification event stream service: This feature is used to request

the opening of an event stream enabling FRMCS Trackside Gateway to send

notifications to the Trackside Application after the local registration. This is done during

the local binding. (I)

10.1.9 General notification service: upon Trackside Application’s subscription to

notification event stream, the Trackside Application receive a set of general

notifications which are linked to the following events: (I)

• Incoming session request: The FRMCS Trackside Gateway notifies the

Trackside Application of the reception of an incoming (Trackside terminated)

session request.

• Final answer of a session initiation: the FRMCS Trackside Gateway notifies

the Trackside application of whether the establishment of the E2E

communication session at the initiative of the Trackside Application was

successful / failed / declined.

• Availability of FRMCS Service Domain (FSD): the FRMCS Trackside

Gateway notifies the Trackside Application of the availability of FRMCS

Service Domain.

• Session closure notification: The FRMCS Trackside Gateway notifies the

Trackside Application of the closure of an open session over TSAPP.

50 / 102

• Upcoming deregistration notification: The FRMCS Trackside Gateway notifies

the Trackside Application of an imminent deregistration of FRMCS Trackside

Gateway (e.g., as a preparation for a train turnoff).

Note: These notifications do not require an explicit subscription from application and are

implicitly included in the subscription to the notification event stream.

10.1.10 <Intentionally Deleted>

Note: in the context of the API, the term application refers to the application instance, which

is a concrete running software occurrence of an application of a specific type.

10.1.11 The completion of Local Binding shall imply the successful execution of the

following steps: (M)

i. The first step in which an application and the FRMCS Trackside Gateway

shall mutually authenticate using TLS, which is not part of the API. See

section 0 for more details;

ii. And the second step in which an application, through API local registration

service, requests a registration to the FRMCS Trackside Gateway. The

success response from FRMCS Trackside Gateway completes this step;

iii. And the third step in which the Trackside Application subscribes to the

notification event stream. The success response from FRMCS Trackside

Gateway completes this step.

10.1.12 The invocation of any API services beside API version, local registration, and

subscription to the notification event stream is conditioned on the successful

execution of the Local Binding steps. (I)

10.1.13 Mandatory TSAPP API services for different types of applications is covered in

section 0. (I)

10.2 Definition of the parameters used in the API services

10.2.1 A comprehensive description of attributes and some basic data types used for TSAPP

API services are provided in informative tables, Table 10-1 and Table 10-2,

respectively. The data types are formally defined in ASN.1 format in the normative

Annex B. (I)

Attribute name Description

1 appCategory Provides the category of the Application. The value is taken out of an enumerated list of
application categories which includes at least standardised categories (e.g., etcs, ato, vas,
tcms) defined in this document. This enumerated list can be extended with other (non-
standardised) application categories per railway infrastructure manager’s or railway
undertaking’s use, This parameter is a local attribute which can be used by FRMCS to
decide how an application can be served.

2 staticId Unique identifier of the Application within the scope of an FRMCS Trackside Gateway.

3 dynamicId Identifier of the application instance dynamically assigned at the FRMCS Trackside
Gateway, unique in the scope of the FRMCS Trackside Gateway. The format shall be a
Universally Unique Identifier (UUID) version 4, as described in IETF [RFC 4122].

4 apiVersion The API version of TSAPP used by Trackside Application, as a part of API URI. The API
version is in format v{MAJOR}.{MINOR}, as defined in clause 10.4. The default value is set
to “v1.0”.

5 supportedVersionsList List of supported API versions of TSAPP by FRMCS Trackside Gateway. The API version is
in format v{MAJOR}.{MINOR}, as defined in clause 10.4.

6 couplingMode The application coupling mode (i.e. Loose coupled, Tight coupled)..

51 / 102

Table 10-1: Definition of the parameter types that are used in the API request / response

Type Name Description

Uuid
The format shall be a Universally Unique Identifier (UUID) version 4, as described
in IETF [RFC 4122].

Ipv4Addr
String identifying a IPv4 address formatted in the "dotted decimal" notation as
defined in IETF [RFC 1166].

Pattern: '^(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-

9][0-9]|2[0-4][0-9]|25[0-5])$'

Ipv6Addr
String identifying an IPv6 address formatted according to clause 4 of
IETF [RFC 5952]. The mixed IPv4 IPv6 notation according to clause 5 of
IETF [RFC 5952] shall not be used.
Pattern: '^((:|(0?|([1-9a-f][0-9a-f]{0,3}))):)((0?|([1-9a-f][0-9a-f]{0,3})):){0,6}(:|(0?|([1-
9a-f][0-9a-f]{0,3})))$'
And Pattern: '^((([^:]+:){7}([^:]+))|((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))$'

Uri
String providing an URI formatted according to IETF [RFC 3986].

If the URI fields intended to convey generic data (e.g., in the value part of a query
parameter, or in the URI path segments) contain reserved characters, these
reserved characters shall be percent-encoded as defined in clause 5.2.10.2 of
[3GPP TS 29.500].

ApiVersion String in format “v{MAJOR}.{MINOR}”.

Table 10-2: Basic Data Types

7 uriResource The resource field in the http error response.

8 cause The machine-readable failure cause in the http failure response.

9 detail The human-readable failure cause in the http failure response.

10 recipient The remote recipient of a session originated by Trackside Application. This parameter is
constituted of the address of the remote recipient.

11 sessionId Identifier of the session, unique in the scope of the FRMCS Trackside Gateway per
dynamicId. The format shall be a Universally Unique Identifier (UUID) version 4, as
described in IETF [RFC 4122].

12 remoteId Remote identifier of an application in the scope of session exchange messages.

13 sessionStatus The status of a session indicating one of the following three cases: a) the E2E session is
succeeded, b) the E2E session is failed, c) the E2E session is declined.

14 nextHopIPAddress Local FRMCS Trackside Gateway IP address to be used by the Trackside Application as
local next hop IP address for the User Plane data in case of successful session
establishment.

15 destApplicationIPAddr
ess

The FRMCS IP address of destination application endpoint to be used by the Trackside
Application as destination address for the User Plane data in case of successful session
establishment.

16 communicationCatego
ry

This parameter reflects the different categories of communication (session) that can be
established over the FRMCS for a given application. This parameter is used by the
FRMCS Trackside Gateway to initiate an end-to-end session. Based on this parameter,
the FRMCS Trackside Gateway assigns the right communication profile including the QoS
level to the session.

17 localAppIPAddress Local Application IP address to be used by the FRMCS Trackside Gateway as destination
address for the User Plane data in case of successful session establishment.

18 sessionOriginator The origin of a session A session on TSAPP is either originated by the Trackside Application
or is an incoming session which is terminated at Trackside Application.

19 incomingSessionAppR
esponse

Application response to an incoming session which is one the followings: a) accepted, b)
rejected.

52 / 102

10.2.2 The TSAPP interface to the FRMCS Trackside Gateway will have different versions as

new features will be introduced. Supported versions are communicated over the

TSAPP. For each interface version, a change log is maintained, and changes are

categorised into Major and Minor categories. (I)

10.2.3 The TSAPP API versioning is defined in clause 10.4. (I)

10.2.3i For a TSAPP API implemented according to the present FFFIS, the API version shall

be set to v0.1. (M)

10.2.4 The dynamicId and sessionId shall be random cryptographic identities generated by

FRMCS Trackside Gateway at runtime. (M)

10.2.5 The appCategory, as defined in Annex B, allows a list of both harmonized and non-

harmonized applications. (I)

10.2.6 The field name for non-harmonized applications within appCategory shall include a

prefix “ext.”, indicating non-harmonized extension of the application list. (M)

10.2.7 The static identifier of the application shall be unique in the scope of all FRMCS

application instances within an FRMCS Trackside Gateway. The structure of FRMCS

System identities that are used to set up the relevant FRMCS services and

communication link(s) with other FRMCS users shall fulfil the requirements as

specified in the [FRMCS-SRS]. (M)

10.2.8 The remote address of an application in the scope of TSAPP session exchange

messages shall fulfil the requirements as specified in the [FRMCS-SRS] section

11.6.5. (M)

10.3 API URI

10.3.1 The API URI of the TSAPP APIs shall be:

{apiRoot}/<apiName>/<apiVersion>/<ResourceName>, with the following

components:

• The {apiRoot} shall be set as “https://{localIdApiRoot}”. (M)

• The <apiName> shall be "tsapp". (M)

• The <apiVersion> shall be set to “{apiVersion}” (see details in clause 10.4). (M)

• The <ResourceName> shall be set as described in clause 10.6.2. (M)

10.3.2 The localIdApiRoot is of string type with value being deployment-specific, such as the

IP address of the FRMCS Trackside Gateway within the train IP network or a locally

resolvable FQDN (if the train is equipped with a DNS server). (I)

53 / 102

10.4 API version

10.4.1 API version (represented by ApiVersion data type) shall be a string with format

“v{MAJOR}.{MINOR}”. (M)

10.4.2 The 1st Field (MAJOR) and the 2nd Field (MINOR) shall contain unsigned integer

numbers, and they shall not contain leading zeroes. (M)

10.4.3 Given the format of API version, the version increments follow the rules defined in the

following clauses. (I)

10.4.4 The 1st Field (MAJOR) shall be incremented only if the applied change is backward

incompatible relative to the earlier, i.e. frozen version of the API. (M)

10.4.5 For a non-frozen API, the first backwards incompatible change(s) relative to the

latest frozen version triggers incrementing the 1st Field (MAJOR), while subsequent

backwards incompatible changes do not increment the value, until the API stays

non-frozen. When the (MAJOR) field is incremented the (MINOR) field will be reset

to 0. (I)

10.4.6 The 2nd Field (MINOR) shall be incremented only if the applied change is a

backward compatible new feature relative to the earlier, i.e. frozen version of the API.

(M)

10.4.7 For a non-frozen API, the first backwards compatible change(s) relative to the latest

frozen version triggers incrementing the 2nd Field (MINOR), while subsequent

backwards compatible changes do not increment the value, until the API stays non-

frozen. (I)

10.4.8 An Trackside Application which wants to communicate with FRMCS Trackside

Gateway will priorly request the supported API version(s) by FRMCS Trackside

Gateway as defined in clause 0. The Trackside Application will then use its selected

API version among the list communicated by FRMCS Trackside Gateway as the

apiVersion in the URI path of the subsequent requests. (I)

10.5 Http and SSE usage

10.5.1 HTTP/2, as defined in [RFC 9113], shall be used. (M)

10.5.2 The data contained in the body of HTTP request, HTTP response, and in the Data

filed of SSE message shall be encoded in JSON as specified in [RFC 8259]. (M)

10.5.3 The use of the JSON format shall be signalled by the content type "application/json".

(M)

10.6 Resource names and HTTP methods

54 / 102

10.6.1 Figure below describes the resource URI structure of the TSAPP API. (I)

10.6.2 Table below provides an overview of the resources’ names and applicable HTTP

methods. (I)

Endpoint Method Purpose

/versions GET Obtain supported API versions by the FRMCS Trackside

Gateway

/registrations POST Register an application

/registrations/{dynamicId} DELETE De-register an application

/sessions/{dynamicId} GET List of sessions for an application

POST Create a session for an application

/sessions/{dynamicId}/{ses

sionId}

GET Get information on a session of an application

PUT Accept an incoming session for an application

DELETE Terminate a session for an application

/notifications/{dynamicId}/e

vents

GET Subscribe to the event stream to receive notifications

/keepalive/{dynamicId}/ GET Request a life signal from FRMCS Trackside Gateway

55 / 102

10.7 API version service

10.7.1 This API service allows an Trackside Application to obtain the supported version(s)

of API by FRMCS Trackside Gateway and can be invoked without local registration.

(I)

10.7.2 The Trackside Application shall send a GET request to the {apiRoot}/tsapp/versions

endpoint. (M)

10.7.3 On success, 200 (OK) shall be returned with ApiVersionsData content as defined in

Annex B. (M)

10.7.4 The Trackside Application shall utilise one of the API versions among the list of

supported versions by FRMCS Trackside Gateway as the apiVersion in the API URI

(see clause 10.3) of its subsequent requests. (M)

10.8 Local registration services

10.8.1 Register a Trackside Application

10.8.1.1 This API service allows an Trackside Application to register to the FRMCS

Trackside Gateway and to obtain a unique identity (i.e., dynamicId) to be used in

the API URI path of the subsequent requests. (I)

56 / 102

10.8.1.2 The Trackside Application shall send a POST request to the /registrations endpoint.

(M)

10.8.1.3 The Trackside Application shall send RegisterData content as defined in Annex B

in the POST request.(M)

10.8.1.4 On success, 201 (Created) shall be returned, with Location header set to the URI of

the registered application instance. (M)

10.8.1.5 The 201 (Created) response shall contain RegisteredData structure as defined in

Annex B. (M)

10.8.1.6 On failure, one of the HTTP status codes listed in Table 10-3 shall be returned. (M)

10.8.1.7 For a 4xx, the message body shall contain a RegisterErrorData structure as defined

in Annex B. (M)

10.8.1.8 In the RegisterErrorData of HTTP failure response, the uriResource shall be set to

the revoked URI resource, and cause shall be set to the values in one of the rows

of Table 10-3. (M)

Table 10-3. Data structures supported by the POST Response Body

10.8.2 De-Register an Trackside Application

Data type P Response
codes

Description

RegisteredData M 201 Created Successful.

RegisterErrorData M 400 Bad Request The “cause” attribute shall be set to the following:
- ILL_FORMED_REQUEST

The “detail” attribute can provide more details in a
human-readable format..

RegisterErrorData M 403 Forbidden The “cause” attribute shall be set to the following:
- UNAUTHORIZED

The “detail” attribute can provide more details in a
human-readable format.

57 / 102

10.8.2.1 The Trackside Application shall send a DELETE request to the

/registration/{dynamicId} endpoint. (M)

10.8.2.2 On success, 204 (No Content) shall be returned. (M)

10.8.2.3 On failure, one of the HTTP status code listed in Table 10-4 shall be returned. (M)

10.8.2.4 For a 4xx, the message body shall contain a DeRegisterErrorData structure as

defined in Annex B. (M)

10.8.2.5 In the DeRegisterErrorData of HTTP failure response, the uriResource shall be set

to the revoked URI resource, and cause shall be set to the values in one of the

rows of Table 10-4. (M)

Table 10-4. Data structures supported by the DELETE Response Body

10.9 Notification services

10.9.1 Opening the notification event stream for an application

10.9.1.1 As a part of local binding an application subscribes to a notification event stream as

defined in this clause. This notification event stream receives general notifications

as well as the notifications from the notification channels to which the application is

explicitly subscribed. (I)

10.9.1.2 The subscription to a notification event stream implicitly includes the subscription to

a set of general notifications of the following types: OpenSessionFinalAnswerNotif

(see clause 10.9.1.9), IncomingSessionNotif (see clause 10.9.1.10), FsdAvlNotif

(see clause 10.9.1.12), SessionClosureNotif (see clause 10.9.1.13) and

UpcomingDeregistrationNotif (see clause 10.9.1.14). (I)

Data type P Response
codes

Description

N/A M 204 No Content Successful.

DeRegisterErrorData M 401 Unauthorized The “cause” attribute shall be set to the following:
- UNREGISTERED

The “detail” attribute can provide more details in a human-
readable format.

DeRegisterErrorData M 404 Not Found The “cause” attribute shall be set to the following:
- NOT_FOUND

The “detail” attribute can provide more details in a human-
readable format.

58 / 102

10.9.1.3 The Trackside Application shall send a GET request to the

/notifications/{dynamicId}/events endpoint. The following headers shall be set: (M)

• accept: text/event-stream

• ccache-control: no-cache

10.9.1.4 On success, 200 (OK) shall be returned, the following headers shall be set: (M)

• content-type: text/event-stream

10.9.1.5 On failure, one of the HTTP status codes listed in Table 10-5 shall be returned. (M)

10.9.1.6 For a 4xx, the message body shall contain a EventStreamErrorData structure as

defined in Annex B. (M)

10.9.1.7 In the EventStreamErrorData of HTTP failure response, the uriResource shall be

set to the revoked URI resource, and cause shall be set to the values in one of the

rows of Table 10-5. (M)

Table 10-5. Data structures supported by the GET Response Body

10.9.1.8 Following a successful subscription of an application to the notification event

stream, the FRMCS Trackside Gateway shall send the SSE messages with the

following field: (M)

• data: A JSON object of the type TsEventType as defined in Annex B.

10.9.1.9 General event type “openSessionFinalAnswerNotif”

10.9.1.9.1 The openSessionFinalAnswerNotif notifies to the application one of the 3

following statuses of E2E session: successful or failed or declined. (I)

10.9.1.9.2 If the notification concerns a successful status, the SSE message for

openSessionFinalAnswerNotif event shall contain a

OpenSessionFinalAnswerNotifSuccessData structure as defined in Annex B.(M)

10.9.1.9.3 If the notification concerns a declined status, The SSE message for

openSessionFinalAnswerNotif event shall contain a

OpenSessionFinalAnswerNotifDeclinedData structure as defined in Annex B and

with cause set to one of the values in the corresponding row in Table 10-6. (M)

Data type P Response
codes

Description

N/A M 200 OK Successful.

EventStreamErrorD
ata

M 401
Unauthorised

The “cause” attribute shall be set to the following:

- UNREGISTERED

The “detail” attribute shall be set to the corresponding
description defined in.

EventStreamErrorD
ata

M 403 Forbidden The “cause” attribute shall be set to the following:
- UNAUTHORIZED

The “detail” attribute can provide more details in a
human-readable format.

59 / 102

10.9.1.9.4 If the notification concerns a failed status, The SSE message for

openSessionFinalAnswerNotif event shall contain a

OpenSessionFinalAnswerNotifFailedData structure as defined in Annex B and

with cause set to one of the values in the corresponding row in Table 10-6. (M)

Table 10-6. Data structures for the SSE message OpenSessionFinalAnswerNotif

10.9.1.10 General event type “incomingSessionNotif”

10.9.1.10.1 The SSE message for incomingSessionNotif event shall contain a

IncomingSessionNotifData structure as defined in Annex B. (M)

10.9.1.11 <intentionally deleted>

10.9.1.12 General event type “fsdAvlNotif”

10.9.1.12.1 The SSE message for fsdAvlNotif event shall contain a FsdAvlNotifData

structure as defined in Annex B. (M)

10.9.1.13 General event type “sessionClosureNotif”

10.9.1.13.1 The SSE message for sessionClosureNotif event shall contain a

SessionClosureNotifData structure as defined in Annex B. (M)

10.9.1.14 General event type “upcomingDeregistrationNotif”

10.9.1.14.1 The SSE message for upcomingDeregistrationNotif event shall contain a

UpcomingDeregistrationNotifData structure as defined in Annex B. (M)

Data type P Description

OpenSessionFinalAnswerNotif
SuccessData

M The E2E session is successful.

OpenSessionFinalAnswerNotif
FailedData

M The E2E session is failed..
The “cause” attribute shall be set to one of the followings:

- MCX_ENDPOINT_NOT_REACHABLE

- TERMINATING_APPLICATION_ENDPOINT_NOT_REACH
ABLE

- TERMINATING_APPLICATION_NOT_ALLOWED

The “detail” attribute can provide more details in a human-readable
format.

OpenSessionFinalAnswerNotif
DeclinedData

M The E2E session is declined.
The “cause” attribute shall be set to the following:

- REMOTE_ENDPOINT_DECLINED

The “detail” attribute can provide more details in a human-readable
format.

60 / 102

10.9.2 <Intentionally Deleted>

10.9.3 <Intentionally Deleted>

10.9.4 <Intentionally Deleted>

10.9.5 <Intentionally Deleted>

10.10 Session services

10.10.1 Opening a session for an application

10.10.1.1 This section describes how to initiate a session for an application on TSAPP.

(I)

10.10.1.2 The Trackside Application shall send a POST request to the

/sessions/{dynamicId} endpoint. (M)

10.10.1.3 The Trackside Application shall send TSSessionOpenData content as

defined in Annex B in the POST request. (M)

10.10.1.4 On success, 201 (Session Created) shall be returned. (M)

10.10.1.5 The 201 (Session Created) response shall contain TSSessionOpenedData

structure as defined in Annex B. (M)

10.10.1.6 On failure, one of the HTTP status codes listed in Table 10-7 shall be returned.

(M)

10.10.1.7 For a 4xx, the message body shall contain a TSSessionOpenErrorData

structure as defined in Annex B. (M)

10.10.1.8 In the TSSessionOpenErrorData of HTTP failure response, the uriResource

shall be set to the revoked URI resource, and cause shall be set to the values in

one of the rows of Table 10-7. (M)

Data type P Response
codes

Description

TSSessionOpenedD
ata

M 201 Session
Created

Successful.

TSSessionOpenErro
rData

M 400 Bad Request The “cause” attribute shall be set to the following:
- ILL_FORMED_REQUEST

The “detail” attribute can provide more details in a
human-readable format.

61 / 102

Table 10-7.Data structures supported by the POST Response Body

10.10.2 Get a session status

10.10.2.1 The Trackside Application shall send a Get request to the

/sessions/{dynamicId}/{sessionId} endpoint. (M)

10.10.2.2 On success, 200 (OK) shall be returned containing SessionStatusData

structure as defined in Annex B. (M)

10.10.2.3 On failure, one of the HTTP status codes listed in Table 10-8 shall be returned.

(M)

10.10.2.4 For a 4xx, the message body shall contain a SessionStatusErrorData structure,

as defined in Annex B. (M)

10.10.2.5 In the SessionStatusErrorData of HTTP failure response, the uriResource shall

be set to the revoked URI resource, and cause shall be set to the values in one of

the rows of Table 10-8. (M)

 Table 10-8.Data structures supported by the GET Response Body

TSSessionOpenErro
rData

M 401
Unauthorised

The “cause” attribute shall be set to the following:
- UNREGISTERED

The “detail” attribute can provide more details in a
human-readable format.

TSSessionOpenErro
rData

M 403 Forbidden The “cause” attribute shall be set to the following:

- UNAUTHORIZED

The “detail” attribute can provide more details in a
human-readable format.

Data type P Response
codes

Description

SessionStatusData M 200 OK Successful.

SessionStatusError
Data

M 401
Unauthorised

The “cause” attribute shall be set to the following:
- UNREGISTERED

The “detail” attribute can provide more details in a
human-readable format.

SessionStatusError
Data

M 404 Not Found The “cause” attribute shall be set to the following:
- UNKNOWN_SESSION

The “detail” attribute can provide more details in a
human-readable format.

62 / 102

10.10.3 Get list of sessions for an application

10.10.3.1 The Trackside Application shall send a Get request to the

/sessions/{dynamicId} endpoint. (M)

10.10.3.2 On success, 200 (OK) shall be returned containing the SessionsListData as

defined in Annex B. (M)

10.10.3.3 On failure, one of the HTTP status codes listed in Table 10-9 shall be returned.

(M)

10.10.3.4 For a 4xx, the message body shall contain a SessionsListErrorData structure,

as defined in Annex B. (M)

10.10.3.5 In the SessionsListErrorData of HTTP failure response, the uriResource shall

be set to the revoked URI resource, and cause shall be set to the values in one of

the rows of Table 10-9. (M)

Table 10-9. Data structures supported by the GET Response Body

Data type P Response
codes

Description

SessionsListData M 200 OK Successful.

SessionsListErrorDa
ta

M 401
Unauthorised

The “cause” attribute shall be set to the following:

- UNREGISTERED

The “detail” attribute can provide more details in a
human-readable format.

SessionsListErrorDa
ta

M 404 Not Found The “cause” attribute shall be set to the following:
- NOT_FOUND

The “detail” attribute can provide more details in a
human-readable format.

63 / 102

10.10.4 Closures of a session

10.10.4.1 The Trackside Application shall send a DELETE request to the

/sessions/{dynamicId}/{sessionId} endpoint. (M)

10.10.4.2 On success, 204 (No Content) shall be returned with the SessionClosedData

structure as defined in Annex B. (M)

10.10.4.3 On failure, one of the HTTP status codes listed in Table 10-10 shall be

returned. (M)

10.10.4.4 For a 4xx, the message body shall contain a SessionCloseErrorData structure,

as defined in Annex B. (M)

10.10.4.5 In the SessionCloseErrorData of HTTP failure response, the uriResource shall

be set to the revoked URI resource, and cause shall be set to the values in one of

the rows of Table 10-10. (M)

Table 10-10.Data structures supported by the DELETE Response Body

Data type P Response
codes

Description

SessionCloseData M 204 No Content Successful.

SessionCloseErrorD
ata

M 401
Unauthorised

The “cause” attribute shall be set to the following:

- UNREGISTERED

The “detail” attribute can provide more details in a
human-readable format.

SessionCloseErrorD
ata

M 404 Not Found The “cause” attribute shall be set to the following:
- UNKNOWN_SESSION

The “detail” attribute can provide more details in a
human-readable format.

64 / 102

10.10.5 Accept an incoming session

10.10.5.1 The Trackside Application shall send a PUT request to the

/sessions/{dynamicId}/{sessionId} endpoint containing

IncomingSessionNotificationResponseData structure as defined in Annex B. (M)

10.10.5.2 On success, one of the status codes 2xx listed in Table 10-11 shall be

returned. (M)

10.10.5.3 <Intentionally Deleted>

10.10.5.4 On failure, one of the HTTP status codes listed in Table 10-11 shall be

returned.

10.10.5.5 For a 4xx, the message body shall contain a

IncomingSessionNotificationResponseErrorData structure, as defined in Annex B.

(M)

10.10.5.6 In the IncomingSessionNotificationResponseErrorData of HTTP failure

response, the uriResource shall be set to the revoked URI resource, and cause shall

be set to the values in one of the rows of Table 10-11. (M)

Table 10-11.Data structures and response codes supported by the PUT Response Body

Data type P Response
codes

Description

N/A M 201 Created Sent if the application has accepted the incoming session
request.

N/A M 204 No Content Acknowledgement of the application having declined the
incoming session request.

IncomingSessionNotif
icationResponseError
Data

M 400 Bad Request The “cause” attribute shall be set to the following:
- ILL_FORMED_REQUEST

The “detail” attribute can provide more details in a human-
readable format.

IncomingSessionNotif
icationResponseError
Data

M 401 Unauthorised The “cause” attribute shall be set to the following:

- UNREGISTERED

The “detail” attribute can provide more details in a human-
readable format.

IncomingSessionNotif
icationResponseError
Data

 404 Not Found The “cause” attribute shall be set to the following:
- UNKNOWN_SESSION

The “detail” attribute can provide more details in a human-
readable format.

65 / 102

10.11 Keep alive service

10.11.1 This API service allows an Trackside Application to get a life signal from

FRMCS Trackside Gateway. (I)

10.11.2 The Trackside Application shall send a GET request to the

/keepalive/{dynamicId}/ endpoint. (M)

10.11.3 On success, 204 (No Content) shall be returned.

10.11.4 On failure, one of the HTTP status codes listed in Table 10-12 shall be

returned. (M)

10.11.5 For a 4xx, the message body shall contain a KeepAliveErrorData structure,

as defined in Annex B. (M)

10.11.6 In the KeepAliveErrorData of HTTP failure response, the uriResource shall be

set to the revoked URI resource, and cause shall be set to the values in one of the

rows of Table 10-12. (M)

Table 10-12. Data structures supported by the GET Response Body

10.12 <Intentionally Deleted>

10.13 API support by FRMCS Trackside Gateway and Trackside Applications

10.13.1 [FRMCS SRS] section 6.1.3 defines for which application the TSAPP is applied. (I)

10.13.2 The FRMCS TRACKSIDE GATEWAY shall implement and expose all API services

provided for TSAPP. (M)

10.13.3 The following API services shall be implemented by all Trackside Applications: (M)

Data type P Response
codes

Description

NA M 204 OK No Content.

KeepAliveErrorData M 401
Unauthorised

The “cause” attribute shall be set to the following:

- UNREGISTERED

The “detail” attribute can provide more details in a
human-readable format.

66 / 102

• GET /versions

• POST /registrations

• GET /notifications/{dynamicId}/events

10.13.4 The following API services shall be implemented by all Trackside Loose Coupled

(LC) applications requiring TS-originated communications: (M)

• POST /sessions/{dynamicId}

• DELETE /sessions/{dynamicId}/{sessionId}

10.13.5 The following API services shall be implemented by all Trackside Loose Coupled

(LC) applications requiring TS-terminated communications: (M)

• PUT /sessions/{dynamicId}}/{sessionId}

• DELETE /sessions/{dynamicId}/{sessionId}

10.13.6 The Table 10-13 represents the mandatory part of API services for applications by

“x” (I):

Endpoint Method Purpose

All

LC (TS-

originated)

LC (TS-

terminated)

/versions GET Obtain supported API versions by

the FRMCS Trackside Gateway

X

/registrations POST Register an application X

/registrations/{dyn

amicId}

DELETE De-register an application

/sessions/{dynami

cId}

GET List of sessions for an application

POST Create a session for an application X

/sessions/{dynami

cId}/{sessionId}

GET Get information on a session of an

application

PUT Accept an incoming session for an

application

 X

DELETE Terminate a session for an

application

 X X

/notifications/{dyn

amicId}/events

GET Subscribe to the event stream to

receive notifications

X

/keepalive/{dynam

icId}/

GET Request a life signal from FRMCS

Trackside Gateway

Table 10-13.Mandatory part of API services for different categories of application

10.14 <Intentionally Deleted>

10.15 <Intentionally Deleted>

67 / 102

11 <Intentionally Deleted>

68 / 102

Annex A. (Normative) ASN.1 notations of OBAPP parameters

A.1 Basic Data Types

Uuid ::= UTF8String(PATTERN "[0-9A-F]#8-[0-9A-F]#4-[4][0-9A-F]#3-[89AB][0-9A-

F]#3-[0-9A-F]#12")

ApiVersion ::= UTF8String(PATTERN "|v[0-9]#(1,2)\.[0-9]#(1,2)")

DomainName ::= UTF8String(PATTERN "[0-9]#3-[0-9]#(2,3)")

Uri ::= UTF8String(SIZE(3..256))

Ipv4Address ::= UTF8String(PATTERN "(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-

5])\.)#3([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])")

Ipv6Address ::= UTF8String(PATTERN "((:|(0?|([1-9a-f][0-9a-f]#(0,3)))):)((0?|([1-9a-f][0-

9a-f]#(0,3))):)#(0,6)(:|(0?|([1-9a-f][0-9a-f]#(0,3))))")

IpAddress ::= CHOICE {

 v4 Ipv4Address,

 v6 Ipv6Address

}

-- DATE-TIME is a built-in data type of ASN1 in format UTF8String(PATTERN "[0-9]#4-

(0[0-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[12])T([01][0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]|60)(\.[0-

9]+)?(Z|[+-]([01][0-9]|2[0-3]):[0-5][0-9])?") --

A.2 OBapp parameters

-- In later versions this any-character format after ext. can be limited to some character class,

if needed.

AppCategory ::= UTF8String(PATTERN "etcs|ato|vas|tcms|ext\..*")

StaticId ::= UTF8String(SIZE(3..256))

DynamicId ::= Uuid

TimerValue ::= INTEGER(0..300)

ApiVersionList ::= SET OF ApiVersion

CouplingMode ::= ENUMERATED {

 tight,

 loose

}

69 / 102

-- The machine-readable failure cause in the http failure response. --

ErrorCause ::= UTF8String(

 "ILL_FORMED_REQUEST" |

 "UNAUTH_UNKNOWN_APP_CATEGORY" |

 "UNREGISTERED" |

 "UNAUTHORIZED" |

 "NOT_FOUND" |

 "UNKNOWN_NOTIF_CHANNEL" |

 "UNKNOWN_SUBSCRIPTION_ID" |

 "MCX_ENDPOINT_NOT_REACHABLE" |

 "TERMINATING_APPLICATION_ENDPOINT_NOT_REACHABLE" |

 "TERMINATING_APPLICATION_NOT_ALLOWED" |

 "UNKNOWN_SESSION" |

 "REMOTE_ENDPOINT_DECLINED" |

 "DISTANCE_BASED_LOC_REPORT_NOT_SUPPORTED")

-- The detailed failure case description in the http failure response. --

ErrorDetail ::= UTF8String

ErrorUriResource ::= Uri

SessionId ::= Uuid

-- Remote address of an application in the scope of session exchange messages. --

RemoteId ::= Uri

SessionStatus ::= ENUMERATED {

 succeeded,

 failed,

 declined

}

NextHopIPAddress ::= IpAddress

DestApplicationIPAddress ::= IpAddress

CommunicationCategory ::= UTF8String

LocalAppIPAddress ::= IpAddress

SessionOriginator ::= ENUMERATED {

 -- On-Board application originated --

 localApplication,

 -- On-Board application incoming session --

 remoteApplication

}

-- defaulting at infinity if not present--

Period ::= INTEGER

70 / 102

-- defaulting at infinity if not present--

Distance ::= INTEGER

LocReportType ::= ENUMERATED {

 periodicLocRep,

 travelledDistanceLocRep,

 cellChangeLocRep

}

SubscriptionId ::= Uuid

ObEventType ::= CHOICE {

 -- The On-Board FRMCS can use this event type for notifying the application on the

successful establishment of the E2E session. --

 openSessionFinalAnswerNotif OpenSessionFinalAnswerNotifData,

 -- The On-Board FRMCS can use this event type for notifying the application on an

incoming session. --

 incomingSessionNotif IncomingSessionNotifData,

 -- The On-Board FRMCS can use this event type for notifying the availability of FRMCS

Transport Domain. --

 ftdAvlNotif FtdAvlNotifData,

 -- The On-Board FRMCS can use this event type for notifying the availability of FRMCS

Service Domain. --

 fsdAvlNotif FsdAvlNotifData,

-- The On-Board FRMCS can use this event type for reporting subscribed location updates. --

 locReportNotif LocReportNotifData,

-- The On-Board FRMCS can use this event type for requesting the application entity the

closure of an OBapp session (incoming or outgoing). --

 sessionClosureNotif SessionClosureNotifData,

-- The On-Board FRMCS can use this event type for informing the application of an

upcoming deregistration/turnoff of On-Board FRMCS. --
 upcomingDeregistrationNotif UpcomingDeregistrationNotifData
}

-- 0 if FTD is not available, 1 if FTD is available. --

FtdAVL ::= BOOLEAN

-- 0 if FSD is not available, 1 if FSD is available. --

FsdAVL ::= BOOLEAN

-- 1 if the event is due is network transition, 0 otherwise. --

NWTransition ::= BOOLEAN

FrmcsDomain ::= DomainName

Recipient ::= SET {

 remoteId RemoteId

71 / 102

}

IncomingSessionAppResponse ::= ENUMERATED {

 -- Incoming session is accepted by application. --

 accepted,

 -- Incoming session is rejected by application. --

 rejected

}

-- The notification channels to which an application can subscribe. --

NotifChannel ::= ENUMERATED {

 -- Location information update notification channel. --

 location

}

ServingCellId ::= UTF8String(PATTERN "^[0-9]#3-[0-9]#(2,3)\.[A-Fa-f0-9]#9")

-- The longitude as a constituent of Train Geographic 2D Position. --

Longitude ::= INTEGER(-8388608..8388607)

-- The latitude as a constituent of Train Geographic 2D Position. --

Latitude ::= INTEGER(-8388608..8388607)

-- The Accuracy of the Train Geographic 2D Position (horizontal accuracy). --

HorizontalAccuracy ::= INTEGER(0..255)

-- The speed of the train. --

Speed ::= INTEGER(0..65535)

-- The direction of the train. --

Direction ::= INTEGER(0..359)

-- The Accuracy of the speed. –

SpeedAccuracy ::= INTEGER(0..255)

GnssInformation ::= SET {

 longitude Longitude,

 latitude Latitude,

 horizontalAccuracy HorizontalAccuracy,

 speed Speed,

 direction Direction,

 speedAccuracy SpeedAccuracy

}

-- The time stamp of location report. --

TimeStamp ::= DATE-TIME

72 / 102

ErrorData ::= SET {

 uriResource ErrorUriResource,

 cause ErrorCause,

 detail ErrorDetail

}

A.3 Data structures within OBapp message body text

ApiVersionsData ::= SET {

 supportedVersionsList ApiVersionList

}

RegisterData ::= SET {

 appCategory AppCategory,

 staticId StaticId,

 couplingMode CouplingMode DEFAULT loose

}

RegisteredData ::= SET {

 dynamicId DynamicId

}

RegisterErrorData ::= ErrorData

DeRegisterErrorData ::= ErrorData

EventStreamErrorData::= ErrorData

--The value SubscriptionInfo is channel-specific. For the moment we only have location

channel. --

SubscriptionData::= SET {

subscriptionId SubscriptionId,

channel SubscriptionInfoData

}

SubscriptionInfoData ::= CHOICE {

 location LocNotifReqData

}

SubscriptionsListData ::= SET OF SubscriptionData

SubscriptionsListErrorData ::= ErrorData

OpenSessionFinalAnswerNotifData ::= CHOICE {

 success OpenSessionFinalAnswerNotifSuccessData,

 declined OpenSessionFinalAnswerNotifDeclinedData,

73 / 102

 failed OpenSessionFinalAnswerNotifFailedData

}

OpenSessionFinalAnswerNotifSuccessData ::= SET {

 sessionId SessionId,

 nextHopIPAddress IpAddress,

 destApplicationIPAddress IpAddress

}

OpenSessionFinalAnswerNotifDeclinedData ::= SET {

 sessionId SessionId,

 cause ErrorCause,

 detail ErrorDetail

}

OpenSessionFinalAnswerNotifFailedData ::= SET {

 cause ErrorCause,

 detail ErrorDetail

}

IncomingSessionNotifData ::= SET {

 remoteId RemoteId,

 communicationCategory CommunicationCategory,

 sessionId SessionId

}

FtdAvlNotifData ::= SET {

 ftdAVL FtdAVL,

 nwTransition NWTransition,

 frmcsDomain FrmcsDomain OPTIONAL -- if ftdAVL and nwTransition is TRUE --

} (WITH COMPONENTS {

 ftdAVL(FALSE),

 nwTransition(FALSE),

 frmcsDomain ABSENT

} | WITH COMPONENTS {

 ftdAVL(FALSE),

 nwTransition(TRUE),

 frmcsDomain ABSENT

} | WITH COMPONENTS {

 ftdAVL(TRUE),

 nwTransition(FALSE),

 frmcsDomain ABSENT

} | WITH COMPONENTS {

 ftdAVL(TRUE),

 nwTransition(TRUE),

 frmcsDomain PRESENT

})

FsdAvlNotifData ::= SET {

 fsdAVL FsdAVL,

 nwTransition NWTransition

74 / 102

}

SessionClosureNotifData ::= SET { sessionId SessionId,

 sessionOriginator SessionOriginator

}

UpcomingDeregistrationNotifData ::= SET {
 timeToDeregistration TimerValue
}

LocNotifReqData ::= SET {

 locReportType LocReportType,

 period Period OPTIONAL , -- if locReportType is periodicLocRep --

 distance Distance OPTIONAL -- if locReportType is travelledDistanceLocRep --

} (WITH COMPONENTS {

 locReportType(periodicLocRep),

 period PRESENT,

 distance ABSENT

} | WITH COMPONENTS {

 locReportType(travelledDistanceLocRep),

 period ABSENT,

 distance PRESENT

} | WITH COMPONENTS {

 locReportType(cellChangeLocRep),

 period ABSENT,

 distance ABSENT

})

LocNotifResData ::= SET {

 locReportId SubscriptionId

}

LocNotifErrorData ::= ErrorData

LocReportNotifData ::= SET {

 subscriptionId SubscriptionId,

 servingCellId ServingCellId OPTIONAL,

 gnssInformation GnssInformation OPTIONAL,

 timeStamp TimeStamp

} (WITH COMPONENTS {

 subscriptionId,

 servingCellId PRESENT,

 gnssInformation ABSENT,

 timeStamp

} | WITH COMPONENTS {

 subscriptionId,

 servingCellId ABSENT,

75 / 102

 gnssInformation PRESENT,

 timeStamp

} | WITH COMPONENTS {

 subscriptionId,

 servingCellId PRESENT,

 gnssInformation PRESENT,

 timeStamp

})

UnsubNotifChannelErrorData ::= ErrorData

UnsubChannelsErrorData ::= ErrorData

UnsubNotificationErrorData::= ErrorData

OBSessionOpenData ::= SET {

 localAppIPAddress IpAddress,

 communicationCategory CommunicationCategory,

 recipient Recipient

}

OBSessionOpenedData ::= SET {

 sessionId SessionId

}

OBSessionOpenErrorData ::= ErrorData

SessionStatusData ::= SET {

 sessionOriginator SessionOriginator,

 communicationCategory CommunicationCategory,

 remoteId RemoteId,

 nextHopIPAddress IpAddress OPTIONAL, -- if sessionOriginator is localApplication--

 destApplicationIPAddress IpAddress OPTIONAL, --if sessionOriginator is

localApplication--

 localAppIPAddress IpAddress OPTIONAL -- if sessionOriginator is remoteApplication--

 } (WITH COMPONENTS {

 sessionOriginator(localApplication),

 communicationCategory,

 remoteId,

 nextHopIPAddress PRESENT,

 destApplicationIPAddress PRESENT,

 localAppIPAddress ABSENT

 } | WITH COMPONENTS {

 sessionOriginator(remoteApplication),

 communicationCategory,

 remoteId,

 nextHopIPAddress ABSENT,

76 / 102

 destApplicationIPAddress ABSENT,

 localAppIPAddress PRESENT

})

SessionStatusErrorData ::= ErrorData

StatusPerSessionId ::= SET {

 sessionId SessionId,

 sessionStatusData SessionStatusData

}

SessionsListData ::= SET OF StatusPerSessionId

SessionsListErrorData ::= ErrorData

SessionClosedData ::= SET {

 sessionOriginator SessionOriginator

}

SessionCloseErrorData ::= ErrorData

IncomingSessionNotificationResponseData ::= SET {

 incomingSessionAppResponse IncomingSessionAppResponse,

 localAppIPAddress IpAddress OPTIONAL -- if incomingSessionAppResponse is accepted

--

} (WITH COMPONENTS {

 incomingSessionAppResponse(accepted),

 localAppIPAddress PRESENT

} | WITH COMPONENTS {

 incomingSessionAppResponse(rejected),

 localAppIPAddress ABSENT

})

IncomingSessionNotificationResponseErrorData ::= ErrorData

KeepAliveErrorData ::= ErrorData

77 / 102

Annex B. (Normative) ASN.1 notations of TSAPP parameters

B.1 Basic Data Types

Uuid ::= UTF8String(PATTERN "[0-9A-F]#8-[0-9A-F]#4-[4][0-9A-F]#3-[89AB][0-9A-

F]#3-[0-9A-F]#12")

ApiVersion ::= UTF8String(PATTERN "|v[0-9]#(1,2)\.[0-9]#(1,2)")

DomainName ::= UTF8String(PATTERN "[0-9]#3-[0-9]#(2,3)")

Uri ::= UTF8String(SIZE(3..256))

Ipv4Address ::= UTF8String(PATTERN "(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-

5])\.)#3([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])")

Ipv6Address ::= UTF8String(PATTERN "((:|(0?|([1-9a-f][0-9a-f]#(0,3)))):)((0?|([1-9a-f][0-

9a-f]#(0,3))):)#(0,6)(:|(0?|([1-9a-f][0-9a-f]#(0,3))))")

IpAddress ::= CHOICE {

 v4 Ipv4Address,

 v6 Ipv6Address

}

B.2 TSAPP parameters

--in later versions this any-character format after ext. can be limited to some character class,

if needed. --

AppCategory ::= UTF8String(PATTERN "etcs|ato|vas|tcms|ext\..*")

StaticId ::= UTF8String(SIZE(3..256))

DynamicId ::= Uuid

-- Time value between 0 and 300 seconds --
TimerValue ::= INTEGER(0..300)

ApiVersionList ::= SET OF ApiVersion

CouplingMode ::= ENUMERATED {

 tight,

 loose

}

-- The machine-readable failure cause in the http failure response. --

78 / 102

ErrorCause ::= UTF8String(

 "ILL_FORMED_REQUEST" |

 "UNAUTH_UNKNOWN_APP_CATEGORY" |

 "UNREGISTERED" |

 "UNAUTHORIZED" |

 "NOT_FOUND" |

 "MCX_ENDPOINT_NOT_REACHABLE" |

 "TERMINATING_APPLICATION_ENDPOINT_NOT_REACHABLE" |

 "TERMINATING_APPLICATION_NOT_ALLOWED" |

 "UNKNOWN_SESSION" |

 "REMOTE_ENDPOINT_DECLINED"

)

-- The detailed failure case description in the http failure response. --

ErrorDetail ::= UTF8String

ErrorUriResource ::= Uri

SessionId ::= Uuid

-- Remote address of an application in the scope of session exchange messages. --

RemoteId ::= Uri

SessionStatus ::= ENUMERATED {

 succeeded,

 failed,

 declined

}

NextHopIPAddress ::= IpAddress

DestApplicationIPAddress ::= IpAddress

CommunicationCategory ::= UTF8String

LocalAppIPAddress ::= IpAddress

SessionOriginator ::= ENUMERATED {

 -- Trackside application originated --

 localApplication,

 -- Trackside application incoming session --

 remoteApplication

}

TsEventType ::= CHOICE {

 -- The FRMCS Trackside Gateway can use this event type for notifying the application on

the successful establishment of the E2E session. --

79 / 102

 openSessionFinalAnswerNotif OpenSessionFinalAnswerNotifData,

 -- The FRMCS Trackside Gateway can use this event type for notifying the application on

an incoming session. --

 incomingSessionNotif IncomingSessionNotifData,

-- The FRMCS Trackside Gateway can use this event type for notifying the availability of

FRMCS Service Domain. --

 fsdAvlNotif FsdAvlNotifData,

-- The FRMCS Trackside Gateway can use this event type for requesting the application

entity the closure of a TSapp session (incoming or outgoing). --

 sessionClosureNotif SessionClosureNotifData,

-- The FRMCS Trackside Gateway can use this event type for informing the application of an

upcoming deregistration/turnoff of FRMCS Trackside Gateway. --

 upcomingDeregistrationNotif UpcomingDeregistrationNotifData

}

-- 0 if FSD is not available, 1 if FSD is available. --

FsdAVL ::= BOOLEAN

Recipient ::= SET {

 remoteId RemoteId

}

IncomingSessionAppResponse ::= ENUMERATED {

 -- Incoming session is accepted by application. --

 accepted,

 -- Incoming session is rejected by application. --

 rejected

}

ErrorData ::= SET {

 uriResource ErrorUriResource,

 cause ErrorCause,

 detail ErrorDetail

}

B.3 Data structures within TSAPP message body text

ApiVersionsData ::= SET {

 supportedVersionsList ApiVersionList

}

RegisterData ::= SET {

 appCategory AppCategory,

 staticId StaticId,

 couplingMode CouplingMode DEFAULT loose

80 / 102

}

RegisteredData ::= SET {

 dynamicId DynamicId

}

RegisterErrorData ::= ErrorData

DeRegisterErrorData ::= ErrorData

EventStreamErrorData::= ErrorData

OpenSessionFinalAnswerNotifData ::= CHOICE {

 success OpenSessionFinalAnswerNotifSuccessData,

 declined OpenSessionFinalAnswerNotifDeclinedData,

 failed OpenSessionFinalAnswerNotifFailedData

}

OpenSessionFinalAnswerNotifSuccessData ::= SET {

 sessionId SessionId,

 nextHopIPAddress IpAddress,

 destApplicationIPAddress IpAddress

}

OpenSessionFinalAnswerNotifDeclinedData ::= SET {

 sessionId SessionId,

 cause ErrorCause,

 detail ErrorDetail

}

OpenSessionFinalAnswerNotifFailedData ::= SET {

 sessionId SessionId,

 cause ErrorCause,

 detail ErrorDetail

}

IncomingSessionNotifData ::= SET {

 remoteId RemoteId,

 communicationCategory CommunicationCategory,

 sessionId SessionId

}

FsdAvlNotifData ::= SET {

 fsdAVL FsdAVL

}

SessionClosureNotifData ::= SET {

81 / 102

 sessionId SessionId,

 sessionOriginator SessionOriginator

}

UpcomingDeregistrationNotifData ::= SET {

 timeToDeregistration TimerValue

}

TSSessionOpenData ::= SET {

 localAppIPAddress IpAddress,

 communicationCategory CommunicationCategory,

 recipient Recipient

}

TSSessionOpenedData ::= SET {

 sessionId SessionId

}

TSSessionOpenErrorData ::= ErrorData

SessionStatusData ::= SET {

 sessionOriginator SessionOriginator,

 communicationCategory CommunicationCategory,

 remoteId RemoteId,

 nextHopIPAddress IpAddress OPTIONAL, -- if sessionOriginator is localApplication--

 destApplicationIPAddress IpAddress OPTIONAL, --if sessionOriginator is

localApplication--

 localAppIPAddress IpAddress OPTIONAL -- if sessionOriginator is remoteApplication--

 } (WITH COMPONENTS {

 sessionOriginator(localApplication),

 communicationCategory,

 remoteId,

 nextHopIPAddress PRESENT,

 destApplicationIPAddress PRESENT,

 localAppIPAddress ABSENT

 } | WITH COMPONENTS {

 sessionOriginator(remoteApplication),

 communicationCategory,

 remoteId,

 nextHopIPAddress ABSENT,

 destApplicationIPAddress ABSENT,

 localAppIPAddress PRESENT

})

SessionStatusErrorData ::= ErrorData

StatusPerSessionId ::= SET {

 sessionId SessionId,

82 / 102

 sessionStatusData SessionStatusData

}

SessionsListData ::= SET OF StatusPerSessionId

SessionsListErrorData ::= ErrorData

SessionClosedData ::= SET {

 sessionOriginator SessionOriginator

}

SessionCloseErrorData ::= ErrorData

IncomingSessionNotificationResponseData ::= SET {

 incomingSessionAppResponse IncomingSessionAppResponse,

 localAppIPAddress IpAddress OPTIONAL -- if incomingSessionAppResponse is accepted

--

} (WITH COMPONENTS {

 incomingSessionAppResponse(accepted),

 localAppIPAddress PRESENT

} | WITH COMPONENTS {

 incomingSessionAppResponse(rejected),

 localAppIPAddress ABSENT

})

IncomingSessionNotificationResponseErrorData ::= ErrorData

KeepAliveErrorData ::= ErrorData

83 / 102

Annex C. (Informative) Yaml codes of OBAPP

Editor’s note: the contents of this annex might not be totally in line with the updates of present FFFIS. The intention

is to update this when all normative texts of FRMCS FFFIS v2 are finalized. In v3 this might be replaced by the

GitHub link.

---------------------------- Start: Yaml code --

openapi: 3.1.0

info:

 version: 1.0

 title: OBapp

 description: |

 OBapp reference point.

 © International Union of Railways (UIC) – Paris, 2024

externalDocs:

 description: OBapp reference point

 url: https://uic.org/rail-system/telecoms-signalling/frmcs

servers:

 - url: '{apiRoot}/obapp/{apiVersion}'

 variables:

 apiRoot:

 default: https://obapp.uic.org

 description: apiRoot as defined in clause 9.5 of UIC FFFIS

 apiVersion:

 default: v1.0

 description: version of the API (see clause 9.6 of UIC FFFIS)

tags:

 - name: version management

 description: Management of interface version

 - name: registration management

 description: Management of application registration

 - name: session management

 description: Management of application sessions

 - name: notification management

 description: Management of application notifications

 - name: keepalive management

84 / 102

 description: Management of keepalive endpoint for application

paths:

 /versions:

 servers:

 - url: '{apiRoot}/obapp'

 variables:

 apiRoot:

 default: https://obapp.uic.org

 description: apiRoot as defined in clause 9.5 of UIC FFFIS

 get:

 summary: List of OBapp versions supported by the Onboard FRMCS

 description: |

 Operation used to list the OBapp versions supported by the Onboard FRMCS.

 Can be invoked without local registration

 operationId: listObAppVersion

 tags:

 - version management

 responses:

 '200':

 description: Successful operation - list major and minor versions of OBapp supported
by the Onboard FRMCS

 content:

 application/json:

 schema:

 $ref: "#/components/schemas/ApiVersionsData"

 examples:

 apiVersionsData:

 value: ["v1.0", "v1.1", "v2.0", "v2.1", "v3.0"]

 /registrations:

 post:

 summary: Register an application

 operationId: registerApplication

 tags:

 - registration management

 requestBody:

 required: true

 content:

85 / 102

 application/json:

 schema:

 $ref: '#/components/schemas/RegisterData'

 examples:

 registerData:

 value:

 appCategory: etcs

 staticId: etcs-ob.etcs

 couplingMode: loose

 responses:

 '201':

 description: Successful registration

 headers:

 Location:

 description: 'URI of the registered application instance'

 required: true

 schema:

 $ref: '#/components/schemas/Uri'

 examples:

 location:

 value: "https://192.168.1.254/obapp/v1.0/registrations/4210f20b-23e6-4354-bb1a-
be4e0bc56f57"

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/RegisteredData'

 examples:

 registeredData:

 summary: registration data example

 value:

 dynamicId: 4210f20b-23e6-4354-bb1a-be4e0bc56f57

 '400':

 description: Bad request

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/RegisterErrorData'

86 / 102

 examples:

 registerErrorData:

 summary: example error response for registration bad request

 value:

 resource: "https://192.168.1.254/obapp/v1.0/registrations"

 cause: "ILL_FORMED_REQUEST"

 detail: "the field couplingMode must be loose or tight"

 '403':

 description: Forbidden (unrecognized application, ...)

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/RegisterErrorData'

 examples:

 registerErrorData:

 summary: example error response for registration Forbidden

 value:

 resource: "https://192.168.1.254/obapp/v1.0/registrations"

 cause: "UNAUTHORIZED"

 detail: "the voice application cannot use the 'couplingMode' parameter with value
'loose'"

 /registrations/{DynamicId}:

 parameters:

 - name: DynamicId

 in: path

 required: true

 schema:

 $ref: '#/components/schemas/DynamicId'

 examples:

 dynamicId:

 summary: UUID associated to a successful registration

 value: 4210f20b-23e6-4354-bb1a-be4e0bc56f57

 delete:

 summary: De-register an application

 operationId: deregisterApplication

 tags:

 - registration management

87 / 102

 responses:

 '204':

 description: No content (application deregistered)

 '401':

 description: Unauthorized

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/DeRegisterErrorData'

 examples:

 deRegisterErrorData:

 summary: example error response for unauthorized deregistration

 value:

 resource: "https://192.168.1.254/obapp/v1.0/registrations/4210f20b-23e6-4354-
bb1a-be4e0bc56f57"

 cause: UNREGISTERED

 details: "Deregistration unauthorized; local binding required"

 '404':

 description: Application with {DynamicId} not found

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/DeRegisterErrorData'

 examples:

 deRegisterErrorData:

 summary: example error response for deregistration of a registration not found

 value:

 resource: "https://192.168.1.254/obapp/v1.0/registrations/4210f20b-23e6-4354-
bb1a-be4e0bc56f57"

 cause: "NOT_FOUND"

 details: "Application with {dynamicId} 4210f20b-23e6-4354-bb1a-be4e0bc56f57
not found for deregistration"

 /sessions/{dynamicId}:

 parameters:

 - name: dynamicId

 in: path

 required: true

 schema:

88 / 102

 $ref: '#/components/schemas/DynamicId'

 get:

 summary: List of sessions for an application

 operationId: listApplicationSessions

 tags:

 - session management

 responses:

 '200':

 description: OK

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/SessionsListData'

 examples:

 sessionsListData:

 value: ["ca7b8255-447b-416e-97ba-ee0cbd0a1652", "dc9b42be-6945-47ff-9158-
7cce4c9e1580", "eaf35690-17df-4c3d-8f59-51dc1cc1525b"]

 '401':

 description: Unauthorized, local binding required

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/SessionsListErrorData'

 examples:

 sessionsListErrorData:

 summary: example error response for unauthorized sessions listing

 value:

 resource: "https://192.168.1.254/obapp/v1.0/sessions/4210f20b-23e6-4354-bb1a-
be4e0bc56f57"

 cause: UNREGISTERED

 details: "Sessions listing unauthorized; local binding required"

 '404':

 description: Application with {dynamicId} not found

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/SessionsListErrorData'

 examples:

89 / 102

 sessionsListErrorData:

 summary: example error response for sessions listing for a registration not found

 value:

 resource: "https://192.168.1.254/obapp/v1.0/sessions/4210f20b-23e6-4354-bb1a-
be4e0bc56f57"

 cause: "NOT_FOUND"

 details: "Application with {dynamicId} 4210f20b-23e6-4354-bb1a-be4e0bc56f57
not found for sessions listing"

 post:

 summary: Create a session for an application

 operationId: createApplicationSession

 tags:

 - session management

 requestBody:

 required: true

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/OBSessionOpenData'

 examples:

 obSessionOpenDataIpV4:

 summary: example of open session data ipv4

 value:

 localAppIPAddress:

 ipv4Addr: "198.168.100.50"

 recipientsList:

 - remoteId: etcs-ts.etcs

 communicationCategory: basic

 obSessionOpenDataIpV6:

 summary: example of open session data ipv6

 value:

 localAppIPAddress:

 ipv6Addr: "2001:db8:85a3::8a2e:370:7334"

 recipientsList:

 - remoteId: ato-ob.ato

 communicationCategory: basic

 responses:

 '201':

90 / 102

 description: 'Session created'

 headers:

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/OBSessionOpenedData'

 examples:

 obSessionOpenedData:

 summary: example of successful response for session opening

 value:

 sessionId: ca7b8255-447b-416e-97ba-ee0cbd0a1652

 sessionStatus: inProgress

 '400':

 description: Bad request

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/OBSessionOpenErrorData'

 examples:

 obSessionOpenErrorData:

 summary: example error response for session opening bad request

 value:

 resource: "https://192.168.1.254/obapp/v1.0/sessions/4210f20b-23e6-4354-bb1a-
be4e0bc56f57"

 cause: "ILL_FORMED_REQUEST"

 detail: "Missing parameter"

 '401':

 description: Unauthorized, local binding required

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/OBSessionOpenErrorData'

 examples:

 obSessionsListErrorData:

 summary: example error response for unauthorized session opening

 value:

91 / 102

 resource: "https://192.168.1.254/obapp/v1.0/sessions/4210f20b-23e6-4354-bb1a-
be4e0bc56f57"

 cause: UNREGISTERED

 details: "Session opening unauthorized; local binding required"

 '403':

 description: Forbidden, session initiation not authorized

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/OBSessionOpenErrorData'

 examples:

 obSessionsListErrorData:

 summary: example error response for unauthorized session opening

 value:

 resource: "https://192.168.1.254/obapp/v1.0/sessions/4210f20b-23e6-4354-bb1a-
be4e0bc56f57"

 cause: UNAUTHORIZED

 details: "Session opening unauthorized"

 delete:

 summary: Terminate all sessions for an application

 operationId: terminateApplicationSessions

 tags:

 - session management

 responses:

 '204':

 description: No content (sessions terminated)

 '401':

 description: Unauthorized

 '404':

 description: Not found

 /sessions/{dynamicId}/{sessionId}:

 parameters:

 - name: dynamicId

 in: path

 required: true

 schema:

 $ref: '#/components/schemas/DynamicId'

 examples:

92 / 102

 dynamicId:

 summary: UUID associated to a successful registration

 value: 4210f20b-23e6-4354-bb1a-be4e0bc56f57

 - name: sessionId

 in: path

 required: true

 schema:

 $ref: '#/components/schemas/SessionId'

 examples:

 sessionId:

 summary: UUID associated to a session

 value: ca7b8255-447b-416e-97ba-ee0cbd0a1652

 get:

 summary: Get information on a session of an application

 operationId: listApplicationSessionStatus

 tags:

 - session management

 responses:

 '200':

 description: Successful operation get information about a session

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/SessionStatusData'

 examples:

 sessionStatusData:

 value:

 sessionOriginator: localApplication

 communicationCategory: basic

 nextHopIPAddress:

 ipv4Addr: 192.168.1.221

 destApplicationIPAddress:

 ipv4Addr: 172.16.5.1

 remoteId: etcs-ts.etcs

 '401':

 description: Unauthorized, local binding required

 content:

93 / 102

 application/json:

 schema:

 $ref: '#/components/schemas/SessionStatusErrorData'

 examples:

 sessionStatusErrorData:

 summary: example error response for unauthorized session status listing

 value:

 resource: "https://192.168.1.254/obapp/v1.0/sessions/4210f20b-23e6-4354-bb1a-
be4e0bc56f57/ca7b8255-447b-416e-97ba-ee0cbd0a1652"

 cause: UNREGISTERED

 details: "Session status listing unauthorized; local binding required"

 '404':

 description: Session {sessionId} not found for application {dynamicId}

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/SessionStatusErrorData'

 examples:

 sessionStatusErrorData:

 summary: example error response for session status listing for a session not found

 value:

 resource: "https://192.168.1.254/obapp/v1.0/sessions/4210f20b-23e6-4354-bb1a-
be4e0bc56f57/ca7b8255-447b-416e-97ba-ee0cbd0a1652"

 cause: "NOT_FOUND"

 details: "Session with {sessionId} ca7b8255-447b-416e-97ba-ee0cbd0a1652 not
found for sessions listing"

 put:

 summary: Respond to an incoming session request notification for an application

 operationId: answerApplicationIncomingSessionRequest

 tags:

 - session management

 requestBody:

 description: Request body to respond to an incoming session request

 required: true

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/IncomingSessionNotificationResponseData'

94 / 102

 examples:

 incomingSessionNotificationResponseData:

 value:

 appResponse: accepted

 localAppIPAddress:

 ipv4Addr: 198.50.200.1

 responses:

 '200':

 description: OK, sent if the application has accepted the incoming session request

 headers:

 '204':

 description: No content (acknowledgement of the application having declined the
incoming session request)

 '400':

 description: Bad request

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/IncomingSessionNotificationResponseErrorData'

 examples:

 incomingSessionNotificationResponseErrorData:

 summary: example error response for incoming session response bad request

 value:

 resource: "https://192.168.1.254/obapp/v1.0/sessions/4210f20b-23e6-4354-bb1a-
be4e0bc56f57/ca7b8255-447b-416e-97ba-ee0cbd0a1652"

 cause: "ILL_FORMED_REQUEST"

 details: "Incoming session response; missing parameter 'appResponse'"

 '401':

 description: Unauthorized, local binding required

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/IncomingSessionNotificationResponseErrorData'

 examples:

 incomingSessionNotificationResponseErrorData:

 summary: example error response for unauthorized incoming session response

 value:

95 / 102

 resource: "https://192.168.1.254/obapp/v1.0/sessions/4210f20b-23e6-4354-bb1a-
be4e0bc56f57/ca7b8255-447b-416e-97ba-ee0cbd0a1652"

 cause: UNREGISTERED

 details: "Incoming session response unauthorized; local binding required"

 '404':

 description: Not found

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/IncomingSessionNotificationResponseErrorData'

 examples:

 incomingSessionNotificationResponseErrorData:

 summary: example error response for incoming session response for a session not
found

 value:

 resource: "https://192.168.1.254/obapp/v1.0/sessions/4210f20b-23e6-4354-bb1a-
be4e0bc56f57/ca7b8255-447b-416e-97ba-ee0cbd0a1652"

 cause: "NOT_FOUND"

 details: "Session with {SessionId} ca7b8255-447b-416e-97ba-ee0cbd0a1652 not
found"

 delete:

 summary: Terminate a session for an application

 operationId: terminateApplicationSession

 tags:

 - session management

 responses:

 '204':

 description: No content (session terminated)

 # TODO: consider possible rejection by the server of a session closure?

 '401':

 description: Unauthorized

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/SessionCloseErrorData'

 examples:

 sessionTerminateErrorData:

 summary: example error response for unauthorized session termination

96 / 102

 value:

 resource: "https://192.168.1.254/obapp/v1.0/sessions/4210f20b-23e6-4354-bb1a-
be4e0bc56f57/ca7b8255-447b-416e-97ba-ee0cbd0a1652"

 cause: UNREGISTERED

 details: "Session termination unauthorized; local binding required"

 '403':

 description: Forbidden

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/SessionCloseErrorData'

 examples:

 sessionTerminateErrorData:

 summary: example error response for unauthorized session termination

 value:

 resource: "https://192.168.1.254/obapp/v1.0/sessions/4210f20b-23e6-4354-bb1a-
be4e0bc56f57"

 cause: UNAUTHORIZED

 details: "Session termination unauthorized"

 # TODO '404':

 /notifications/{dynamicId}/events:

 parameters:

 - name: dynamicId

 in: path

 required: true

 schema:

 $ref: '#/components/schemas/DynamicId'

 examples:

 dynamicId:

 summary: UUID associated to a successful registration

 value: 4210f20b-23e6-4354-bb1a-be4e0bc56f57

 get:

 summary: Subscribe to notification event stream for an application (SSE)

 operationId: subscribeApplicationNotificationEventStream

 tags:

 - notification management

 responses:

 '200':

97 / 102

 description: Successful

 '401':

 description: Unauthorized

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/EventStreamErrorData'

 '403':

 description: Forbidden

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/EventStreamErrorData'

 '404':

 description: Not found

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/EventStreamErrorData'

 examples:

 eventStreamErrorData:

 summary: example error response for event stream subscription for a {dynamicId}
not found

 value:

 resource: "https://192.168.1.254/obapp/v1.0/sessions/4210f20b-23e6-4354-bb1a-
be4e0bc56f57/events"

 cause: "NOT_FOUND"

 details: "Application with {dynamicId} 4210f20b-23e6-4354-bb1a-be4e0bc56f57
not found"

 /notifications/{dynamicId}/channels:

 parameters:

 - name: dynamicId

 in: path

 required: true

 schema:

 $ref: '#/components/schemas/DynamicId'

 examples:

 dynamicId:

98 / 102

 summary: UUID associated to a successful registration

 value: 4210f20b-23e6-4354-bb1a-be4e0bc56f57

 get:

 summary: Get information on subscriptions to notifications for an application

 operationId: listApplicationSubscriptions

 tags:

 - notification management

 responses:

 '200':

 description: Successful operation list subscriptions

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/SubscriptionsListData'

 '401':

 description: Unauthorized

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/SubscriptionsListErrorData'

 examples:

 subscriptionsListErrorData:

 summary: example error response for unauthorized listing of subscriptions

 value:

 resource: "https://192.168.1.254/obapp/v1.0/sessions/4210f20b-23e6-4354-bb1a-
be4e0bc56f57/channels"

 cause: UNREGISTERED

 details: "Listing of subscriptions unauthorized; local binding required"

 '403':

 description: Forbidden

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/SubscriptionsListErrorData'

 examples:

 subscriptionsListErrorData:

 summary: example error response for unauthorized listing of subscriptions

99 / 102

 value:

 resource: "https://192.168.1.254/obapp/v1.0/sessions/4210f20b-23e6-4354-bb1a-
be4e0bc56f57/channels"

 cause: UNAUTHORIZED

 details: "Listing of subscriptions unauthorized"

 '404':

 description: Not found

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/SubscriptionsListErrorData'

 examples:

 subscriptionsListErrorData:

 summary: example error response for listing subscriptions for a {dynamicId} not
found

 value:

 resource: "https://192.168.1.254/obapp/v1.0/sessions/4210f20b-23e6-4354-bb1a-
be4e0bc56f57/channels"

 cause: "NOT_FOUND"

 details: "Application with {dynamicId} 4210f20b-23e6-4354-bb1a-be4e0bc56f57
not found"

 delete:

 summary: Unsubscribe to all subscriptions to notifications for an application except for the
general channel

 operationId: deleteApplicationSubscriptions

 tags:

 - notification management

 responses:

 '204':

 description: No content (subscriptions removal successful)

 '401':

 description: Unauthorized

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/UnsubChannelsErrorData'

 examples:

 subscriptionsRemovalErrorData:

 summary: example error response for unauthorized removal of subscriptions

100 / 102

 value:

 resource: "https://192.168.1.254/obapp/v1.0/sessions/4210f20b-23e6-4354-bb1a-
be4e0bc56f57/channels"

 cause: UNREGISTERED

 details: "Removal of subscriptions unauthorized; local binding required"

 '403':

 description: Forbidden

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/UnsubChannelsErrorData'

 examples:

 subscriptionsRemovalErrorData:

 summary: example error response for unauthorized removal of subscriptions

 value:

 resource: "https://192.168.1.254/obapp/v1.0/sessions/4210f20b-23e6-4354-bb1a-
be4e0bc56f57/channels"

 cause: UNAUTHORIZED

 details: "Removal of subscriptions unauthorized"

 '404':

 description: Not found

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/UnsubChannelsErrorData'

 examples:

 subscriptionsRemovalErrorData:

 summary: example error response for bulk unsubscriptions for a {dynamicId} not
found

 value:

 resource: "https://192.168.1.254/obapp/v1.0/sessions/4210f20b-23e6-4354-bb1a-
be4e0bc56f57/channels"

 cause: "NOT_FOUND"

 details: "Application with {dynamicId} 4210f20b-23e6-4354-bb1a-be4e0bc56f57
not found"

 /notifications/{dynamicId}/channels/{channel}:

 parameters:

 - name: dynamicId

 in: path

101 / 102

 required: true

 schema:

 $ref: '#/components/schemas/DynamicId'

 - name: channel

 in: path

 required: true

 schema:

 $ref: '#/components/schemas/NotifChannel'

 delete:

 summary: Unsubscribe to a specific channel for an application

 operationId: unsubscribeApplicationNotificationChannel

 tags:

 - notification management

 responses:

 '204':

 description: No content (channel unsubscribed)

 /keepalive/{dynamicId}:

 parameters:

 - name: dynamicId

 in: path

 required: true

 schema:

 $ref: '#/components/schemas/DynamicId'

 get:

 summary: Check the server is alive at the HTTP level

 operationId: checkKeepalive

 tags:

 - keepalive management

 responses:

 '204':

 description: No content (acknowledgement of the server being responsive on the control
plane)

---------------------------- End: Yaml code --

Editor’s note : the JSON schemas of Data structures in http messages are derived from the corresponding ASN.1

structures in Annex A and can be added as informative text in this Annex.

102 / 102

Annex D. Interoperability requirements in EU

This annex is the placeholder for identifying the requirements relevant for

interoperability in the European Union, i.e. the requirements, with respect to the

authorisation in the EU according to the TSI, that are considered in the European

Directives to be relevant for interoperability as fulfilling the essential requirements for

the Control-Command and Signalling (CCS) subsystem related to safety and

technical compatibility which must be met by the rail system, the subsystems, and

the interoperability constituents, including interfaces according to the corresponding

conditions set out in Directive (EU) 2016/797. It is mandatory that each railway

subsystem in the EU meets these requirements on lines under the scope of the

Directive and the CCS TSI to ensure technical compatibility between Member States

and safe integration between train and track.

At this stage, the version of this specification is not considered complete for the

purpose of tendering On-Board FRMCS equipment, and the identification of all

requirements relevant for interoperability is for further study.

This annex is therefore only informative.

Printed by

International Union of Railways

16, rue Jean Rey 75015 Paris - France

March 2024

Legal deposit March 2024

ISBN 978-2-7461-3120-0

	1 List of abbreviations
	2 List of definitions
	3 References
	3.1 Applicability
	3.1.1.1 References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
	3.1.1.2 For a specific reference, subsequent revisions do not apply.
	3.1.1.3 For a non-specific reference, the latest version applies.

	3.2 List of References

	4 Introduction
	4.1 Purpose of this document
	4.1.1 This Form Fit Functional Interface Specification (FFFIS) specifies the following interfaces: (I)
	4.1.1.1 OBAPP, reference point between the On-Board Applications and the On-Board FRMCS, which is defined in [FRMCS-SRS],
	4.1.1.2 and TSAPP, reference point between the FRMCS Trackside Gateway and the Trackside Applications, which is defined in [FRMCS-SRS].

	4.1.2 Figure 1 below is a simplified FRMCS architecture. It depicts the main high-level functional blocks and indicates the location of the OBAPP and TSAPP interfaces. (I)

	4.2 Scope of this document
	4.2.1 This FFFIS specifies the protocols, the messages and the format of the information exchanged over the OBAPP and TSAPP interfaces which enable interfacing between applications and the FRMCS System. (I)
	4.2.2 This FFFIS cannot be used separately as the FRMCS specifications ([FRMCS-FRS], [FRMCS-SRS], [FRMCS-FIS] and [TOBA-FRS]) have to be considered as a whole. (I)
	4.2.3 This FFFIS is part of the FRMCS specifications as depicted in Figure 4-2: (I)
	4.2.4 The performance and security requirements applicable to OBAPP and TSAPP interfaces are defined in chapter 6. (I)
	4.2.5 An On-Board Application interfacing On-Board FRMCS uses the low layers defined in chapter 7. This FFFIS does not assume a train common bus in all cases (named Ethernet Consist Network in TSI CCS), but only refers to [SUBSET-147] for the case the...
	4.2.6 A Trackside Application interfacing the FRMCS Trackside Gateway uses the low layers defined in chapter 8 (I).
	4.2.7 The On-Board FRMCS exposes the API defined in chapter 9 to On-Board applications. (I)
	4.2.8 The FRMCS Trackside Gateway exposes the API defined in chapter 10 to Trackside applications. (I)

	4.3 Categorization of requirements
	4.3.1 The requirements are categorised as follows (I):
	4.3.1.1 Mandatory for the System (indicated by ‘(M)’ at the end of the clause). These requirements mean a condition set out in this specification that must be met without exception in order to deliver a system ensuring the fulfilment of essential func...
	4.3.1.2 Optional for the system (indicated by ‘(O)’ at the end of the clause). These requirements may be used based on the implementers’ choice. When an option is selected, the related requirement(s) of this specification becomes mandatory for the sys...
	4.3.1.3 Information (indicated by “(I)” at the end of the clause). These statements provide additional information to help the reader understanding a requirement.

	4.3.2 The following marking is applied to denote the applicability of clauses: (I)

	5 General principles
	5.1 OBAPP: Interface between On-Board Applications(s) and On-Board FRMCS
	5.1.1 The OBAPP corresponds to the interface between the On-Board Application(s) and the On-Board FRMCS. This interface ensures management of and access to the communication services allowing the authentication, authorisation, priority and quality of ...
	5.1.2 User Plane data from and to the application(s) is carried over the OBAPP interface. (I)
	5.1.3 Control Plane data exchange between application and On-Board FRMCS is performed over the OBAPP interface. (I)

	5.2 API Functions supported through the OBAPP interface
	5.2.1 The OBAPP Control Plane exposes three main functions: (I)
	5.2.1.1 Local Binding function: The Local Binding function provides functionalities to establish a secure link between an On-Board Application and the On-Board FRMCS, ensuring mutual authentication of both parties through the OBAPP as well as the inte...
	5.2.1.2 Session function: The Session function provides functionalities to establish or terminate connectivity to or from a remote end point for applications operating in Loose Coupled mode. It is implemented through the API Service session features d...
	5.2.1.3 Auxiliary/Notification function: This function enables the applications to subscribe / unsubscribe to one or more notification channel(s) (e.g., location reporting notifications, etc) exposed by the On-Board FRMCS.. The Notification function ...

	5.3 TSAPP: Interface between Trackside Applications(s) and FRMCS Trackside Gateway
	5.3.1 The TSAPP corresponds to the interface between the Trackside Application(s) and the FRMCS Trackside Gateway. This interface ensures management of and access to the communication services allowing the authentication, authorisation, priority and q...
	5.3.2 User Plane data from and to the application(s) is carried over the TSAPP interface. (I)
	5.3.3 Control Plane data exchange between application and FRMCS Trackside Gateway is performed over the TSAPP interface. (I)

	5.4 API Functions supported through the TSAPP interface
	5.4.1 The TSAPP Control Plane exposes three main functions: (I)
	5.4.1.1 Local Binding function: The Local Binding function provides functionalities to establish a secure link between a Trackside Application and the FRMCS Trackside Gateway, ensuring mutual authentication of both parties through the TSAPP as well as...
	5.4.1.2 Session function: The Session function provides functionalities to establish or terminate connectivity to or from a remote end point for applications operating in Loose Coupled mode. It is implemented through the API Service session features d...
	5.4.1.3 Auxiliary/Notification function: This function enables applications to subscribe / unsubscribe to one or more notification channel(s) exposed by the FRMCS Trackside Gateway. The API notification service is described in chapter 10.

	5.5 <Intentionally Deleted>
	5.6 FRMCS Service session in Tight Coupled mode
	5.6.1 In Tight Coupled mode, after the Local Binding (see section 5.2.1) has been successfully performed, the embedded MCX client of the application performs the subsequent 3GPP MCX protocol exchanges over the IP interface of OBAPP / TSAPP. (I)
	5.6.2 In Tight Coupled mode, the Application User Plane is also carried out over the IP interface of OBAPP / TSAPP. (I)

	5.7 FRMCS Service session in Loose Coupled mode
	5.7.1 In Loose Coupled mode, after the Local Binding (see sections 5.2.1 and 5.4.1) has been successfully performed, the Application requests the FRMCS Domain to establish a logical Application Control Plane based on 3GPP MCX on its behalf. It does so...
	5.7.2 In Loose Coupled mode, the Application User Plane is carried out through the OBAPP and TSAPP over IP. (I)

	6 Performance and Security
	6.1 OBAPP Performance requirements
	6.1.1 The physical layer of the OBAPP interface at On-Board FRMCS side supports the minimum gross data rate defined for layer 1 of Ethernet Consist Network (CCS) in [SUBSET-147] (see clause 7.2.2). (I)

	6.2 <Intentionally Deleted>
	6.3 OBAPP Security requirements
	6.3.1 If an FRMCS On-Board is connected to an Ethernet Consist Network compliant with [SUBSET-147], the interface shall comply with the authentication mechanisms specified in [SUBSET-147]. (M)
	6.3.2 On the OBAPP Control Plane, a mutual authentication based on client and server certificates shall be performed between the application and the On-Board FRMCS using the Transport Layer Security (TLS) protocol. During the TLS handshake, client (...
	6.3.3 The integrity and confidentiality protection of the OBAPP Control Plane implemented through the API features shall rely on the Transport Layer Security (TLS) protocol. (M)
	6.3.4 The TLS end points shall support TLS 1.3. ([RFC 8446]). (M)

	6.4 TSAPP Performance requirements
	6.4.1 The data rate on TSAPP interface depends essentially on 1) the size of the operated railway infrastructure and the traffic volume, 2) whether the load is distributed over multiple FRMCS Trackside Gateways. This is fully dependant on implementati...

	6.5 <Intentionally Deleted>
	6.6 TSAPP Security requirements
	6.6.1 On the TSAPP Control Plane, a mutual authentication based on client and server certificates shall be performed between the application and the FRMCS Trackside Gateway using the Transport Layer Security (TLS) protocol. During the TLS handshake, c...
	6.6.2 The integrity and confidentiality protection of the TSAPP Control Plane implemented through the API features shall rely on the Transport Layer Security (TLS) protocol. (M)
	6.6.3 The TLS end points shall support TLS 1.3 ([RFC 8446]). (M)

	6.7 TLS requirements
	6.7.1 The OBAPP shall satisfy the TLS requirements in this clause. (M-V3)
	6.7.2 The TSAPP shall satisfy the TLS requirements in this clause. (M-V3)

	7 OBAPP Low layers specifications and protocol stacks
	7.1 <Intentionally Deleted>
	7.2 OBAPP Physical interface
	7.2.1 The physical interface of the OBAPP at On-Board FRMCS side is made of common off-the-shelf technologies based on Ethernet (IEEE 802.3). (I)
	7.2.2 The physical interface of the OBAPP at On-Board FRMCS side shall comply with layers 1 and 2 requirements of Ethernet Consist Network (CCS) in [SUBSET-147]. (M)

	7.3 OBAPP Internet Protocol versions
	7.3.1 <intentionally deleted>
	7.3.2 <intentionally deleted>
	7.3.2i The support of IP versions exposed by On-Board FRMCS on OBapp shall comply with [FRMCS-SRS] requirements in section 6.5.1. (M)

	7.4 OBAPP local IP allocation scheme
	7.4.1 At the OBAPP interface side, the On-Board FRMCS is seen as a host in the train network and hence it shall be configured in accordance with the IP plan of the train network.
	7.4.2 The On-Board FRMCS shall expose on OBAPP an IP interface with IP address(es) that can be used by the On-Board Application to send/receive OBAPP User Plane and Control Plane data. (M)

	7.5 <Intentionally Deleted>

	8 TSAPP Low layers specifications and protocol stacks
	8.1 TSAPP Connectivity
	8.1.1 The Trackside Applications need to have connectivity to use the FRMCS Trackside Gateway. This connectivity can be established according to different technical choices depending on which device/entity the application is installed, e.g. commercial...
	8.1.2 The communication network architecture and distance between the Trackside Application and the FRMCS Trackside Gateway are fully dependant on implementation choice of the Railway infrastructure manager. This is outside the scope of this FFFIS. (I)
	8.1.3 In case the application does not support TSAPP requirements (physical and/or logical), an agent supporting TSAPP is used in between to connect to the FRMCS Trackside Gateway. The physical and logical interface specifications between the applicat...

	8.2 TSAPP Physical interface
	8.2.1 The physical interface of the TSAPP at FRMCS Trackside Gateway side is made of common off-the-shelf technologies based on Ethernet (IEEE 802.3). (I)
	8.2.2 The TSAPP interface supports the following physical interface requirements: (I)

	8.3 TSAPP Internet Protocol versions
	8.3.1 <intentionally deleted>
	8.3.2 <intentionally deleted>
	8.3.2i The support of IP versions exposed by FRMCS Trackside Gateway on TSapp shall comply with [FRMCS-SRS] requirements in section 6.5.1. (M)

	8.4 TSAPP local IP allocation scheme
	8.4.1 The FRMCS Trackside Gateway shall expose on TSAPP an IP interface with an IP gateway address that can be used by the Trackside Applications to send/receive TSAPP User Plane and Control Plane data. (M)

	8.5 <Intentionally Deleted>

	9 OBAPP API Services
	9.1 Overview of OBAPP API features
	9.1.1 API version: This OBAPP service is used by On-Board Application to obtain the list of API version(s) supported by the On-Board FRMCS. (I)
	9.1.2 Local registration: This OBAPP service is used to perform the Local registration between an On-Board Application and the On-Board FRMCS. (I)
	9.1.3 Local deregistration: This OBAPP service is used to request a local de-registration of the On-Board Application from the On-Board FRMCS. (I)
	9.1.4 Session opening: This OBAPP service is used to establish a session between an On-Board Application and a remote (Trackside or On-Board) application at the initiative of the On-Board Application. (I)
	9.1.5 Incoming Session acceptance: This OBAPP service is used as a part of the establishment of a session between an On-Board Application and a remote (Trackside or On-Board) application at the initiative of the remote application. (I)
	9.1.6 Session closure: This OBAPP service is used to close a session between an On-Board Application and a remote application. (I)
	9.1.7 Session status: This OBAPP service is used to provide the status of a session involving the On-Board Application (I)
	9.1.8 Subscription to notification event stream: This feature is used to request the opening of an event stream enabling On-Board FRMCS to send notifications to the On-Board Application after the local registration. This is done during the local bind...
	9.1.9 General notification: upon On-Board Application’s subscription to notification event stream, the On-Board Application receive a set of general notifications which are linked to the following events: (I)
	9.1.10 Subscription/Unsubscription to a notification channel: the On-Board FRMCS exposes notification channel(s) to which the On-Board Application can subscribe / unsubscribe. Upon a subscription, the On-Board Application receives the notifications co...
	9.1.11 Location reporting notification: this notification channel on OBAPP is used by On-Board Application to subscribe to the location change notifications in one or several of the following manner: (I)
	9.1.12 The completion of Local Binding shall imply the successful execution of the following steps: (M)
	9.1.13 The invocation of any API services beside API versions, local registration, and opening of notification event stream is conditioned on the successful execution of the Local Binding steps. (I)
	9.1.14 Mandatory OBAPP API services for different types of applications are covered in section 9.15. (I)

	9.2 <Intentionally Deleted>
	9.3 <Intentionally Deleted>
	9.4 Definition of the parameters used in the API services
	9.4.1 A comprehensive description of attributes and some basic data types used for OBAPP API services are provided in informative tables, Table 9-1 and Table 9-2, respectively. The data types are formally defined in ASN.1 format in the normative Annex...
	9.4.2 The OBAPP interface to the On-Board FRMCS will have different versions as new features will be introduced. Supported versions are communicated over the OBAPP. For each interface version, a change log is maintained, and changes are categorised in...
	9.4.3 The OBAPP API versioning is defined in clause 9.6. (I)
	9.4.3i For an OBAPP API implemented according to the present FFFIS, the API version shall be set to v0.1. (M)
	9.4.4 The dynamicId, sessionId, and subscriptionId shall be random cryptographic identities generated by On-Board FRMCS at runtime. (M)
	9.4.5 The appCategory, as defined in Annex B, allows a list of both harmonized and non-harmonized applications. (I)
	9.4.6 The field name for non-harmonized applications within appCategory shall include a prefix “ext.”, indicating non-harmonized extension of the application list. (M)
	9.4.7 The static identifier of the application shall be unique in the scope of all FRMCS application instances within an On-Board FRMCS. The structure of FRMCS System identities that are used to set up the relevant FRMCS services and communication lin...
	9.4.8 The remote address of an application in the scope of OBAPP session exchange messages shall fulfil the requirements as specified in the [FRMCS-SRS] section 11.6.5. (M)

	9.5 API URI
	9.5.1 The API URI of the OBAPP APIs shall be: {apiRoot}/<apiName>/<apiVersion>/<ResourceName>, with the following components:
	9.5.2 The localIdApiRoot is of string type with value being deployment-specific, such as the IP address of the On-Board FRMCS within the train IP network or a locally resolvable FQDN (if the train is equipped with a DNS server). (I)

	9.6 API version
	9.6.1 API version (represented by ApiVersion data type) shall be a string with format “v{MAJOR}.{MINOR}”. (M)
	9.6.2 The 1st Field (MAJOR) and the 2nd Field (MINOR) shall contain unsigned integer numbers, and they shall not contain leading zeroes. (M)
	9.6.3 Given the format of API version, the version increments follow the rules defined in the following clauses. (I)
	9.6.4 The 1st Field (MAJOR) shall be incremented only if the applied change is backward incompatible relative to the earlier, i.e. frozen version of the API. (M)
	9.6.5 For a non-frozen API, the first backwards incompatible change(s) relative to the latest frozen version triggers incrementing the 1st Field (MAJOR), while subsequent backwards incompatible changes do not increment the value, until the API stays n...
	9.6.6 The 2nd Field (MINOR) shall be incremented only if the applied change is a backward compatible new feature relative to the earlier, i.e. frozen version of the API. (M)
	9.6.7 For a non-frozen API, the first backwards compatible change(s) relative to the latest frozen version triggers incrementing the 2nd Field (MINOR), while subsequent backwards compatible changes do not increment the value, until the API stays non-f...
	9.6.8 An On-Board Application which wants to communicate with On-Board FRMCS will priorly request the supported API version(s) by On-Board FRMCS as defined in clause 9.9. The On-Board Application will then use its selected API version among the list c...

	9.7 Http and SSE usage
	9.7.1 HTTP/2, as defined in [RFC 9113], shall be used. (M)
	9.7.2 The data contained in the body of HTTP request, HTTP response, and in the Data filed of SSE message shall be encoded in JSON as specified in [RFC 8259]. (M)
	9.7.3 The use of the JSON format shall be signalled by the content type "application/json". (M)

	9.8 Resource names and HTTP methods
	9.8.1 Figure below describes the resource URI structure of the OBAPP API. (I)
	9.8.2 Table below provides an overview of the resources’ names and applicable HTTP methods. (I)

	9.9 API version service
	9.9.1 This API service allows an On-Board Application to obtain the supported version(s) of API by On-Board FRMCS and can be invoked without local registration. (I)
	9.9.2 The On-Board Application shall send a GET request to the {apiRoot}/obapp/versions endpoint. (M)
	9.9.3 On success, 200” (OK) shall be returned with ApiVersionsData content as defined in Annex A. (M)
	9.9.4 The On-Board Application shall utilise one of the API versions among the list of supported versions by On-Board FRMCS as the apiVersion in the API URI (see clause 9.5.1) of its subsequent requests. (M)

	9.10 Local registration services
	9.10.1 Register an On-Board Application
	9.10.1.1 This API service allows an On-Board Application to register to the On-Board FRMCS and to obtain a unique identity (i.e., dynamicId) to be used in the API URI path of the subsequent requests. (I)
	9.10.1.2 The On-Board Application shall send a POST request to the /registrations endpoint. (M)
	9.10.1.3 The On-Board Application shall send RegisterData content as defined in Annex A in the POST request.(M)
	9.10.1.4 On success, 201 (Created) shall be returned, with Location header set to the URI of the registered application instance. (M)
	9.10.1.5 The 201 (Created) response shall contain RegisteredData structure as defined in Annex A. (M)
	9.10.1.6 On failure, one of the HTTP status codes listed in Table 9-3 shall be returned. (M)
	9.10.1.7 For a 4xx, the message body shall contain a RegisterErrorData structure as defined in Annex A. (M)
	9.10.1.8 In the RegisterErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 9-3. (M)

	9.10.2 De-Register an On-Board Application
	9.10.2.1 The On-Board Application shall send a DELETE request to the /registrations/{dynamicId} endpoint. (M)
	9.10.2.2 On success, 204 (No Content) shall be returned. (M)
	9.10.2.3 On failure, one of the HTTP status code listed in Table 9-4 shall be returned. (M)
	9.10.2.4 For a 4xx, the message body shall contain a DeRegisterErrorData structure as defined in Annex A. (M)
	9.10.2.5 In the DeRegisterErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 9-4. (M)

	9.11 Notification services
	9.11.1 Opening the notification event stream for an application
	9.11.1.1 As a part of local binding an application subscribes to a notification event stream as defined in this clause. This notification event stream receives general notifications as well as the notifications from the notification channels to which ...
	9.11.1.2 The subscription to a notification event stream implicitly includes the subscription to a set of general notifications of the following types: OpenSessionFinalAnswerNotif (see clause 9.11.1.9), IncomingSessionNotif (see clause 9.11.1.10), Ft...
	9.11.1.3 The On-Board Application shall send a GET request to the /notifications/{dynamicId}/events endpoint. The following headers shall be set: (M)
	9.11.1.4 On success, 200 (OK) shall be returned, the following headers shall be set: (M)
	9.11.1.5 On failure, one of the HTTP status code listed in Table 9-5 shall be returned. (M)
	9.11.1.6 For a 4xx, the message body shall contain a EventStreamErrorData structure as defined in Annex A. (M)
	9.11.1.7 In the EventStreamErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 9-5. (M)
	9.11.1.8 Following a successful subscription of an application to the notification event stream, the On-Board FRMCS shall send the SSE messages with the following field: (M)
	9.11.1.9 General event type “openSessionFinalAnswerNotif”
	9.11.1.9.1 The openSessionFinalAnswerNotif notifies to the application one of the 3 following statuses of E2E session: successful or failed or declined. (I)
	9.11.1.9.2 If the notification concerns a successful status, the SSE message for openSessionFinalAnswerNotif event shall contain a OpenSessionFinalAnswerNotifSuccessData structure as defined in Annex A.(M)
	9.11.1.9.3 If the notification concerns a declined status, The SSE message for openSessionFinalAnswerNotif event shall contain a OpenSessionFinalAnswerNotifDeclinedData structure as defined in Annex A and with cause set to one of the values in the cor...
	9.11.1.9.4 If the notification concerns a failed status, The SSE message for openSessionFinalAnswerNotif event shall contain a OpenSessionFinalAnswerNotifFailedData structure as defined in Annex A and with cause set to one of the values in the corresp...

	9.11.1.10 General event type “incomingSessionNotif”
	9.11.1.10.1 The SSE message for incomingSessionNotif event shall contain a IncomingSessionNotifData structure as defined in Annex A. (M)

	9.11.1.11 General event type “ftdAvlNotif”
	9.11.1.11.1 The SSE message for ftdAvlNotif event shall contain a FtdAvlNotifData structure as defined in Annex A. (M)

	9.11.1.12 General event type “fsdAvlNotif”
	9.11.1.12.1 The SSE message for fsdAvlNotif event shall contain a FsdAvlNotifData structure as defined in Annex A. (M)

	9.11.1.13 General event type “sessionClosureNotif”
	9.11.1.13.1 The SSE message for sessionClosureNotif event shall contain a SessionClosureNotifData structure as defined in Annex A. (M)

	9.11.1.14 General event type “upcomingDeregistrationNotif”
	9.11.1.14.1 The SSE message for upcomingDeregistrationNotif event shall contain a UpcomingDeregistrationNotifData structure as defined in Annex A. (M)

	9.11.2 Get information on subscriptions to notification for an application
	9.11.2.1 The On-Board Application shall send a GET request to the /notifications/{dynamicId}/channels endpoint. (M)
	9.11.2.2 On success, 200 (OK) shall be returned containing the SubscriptionsListData as defined in Annex A. (M)
	9.11.2.3 On failure, one of the HTTP status codes listed in Table 9-7 shall be returned. (M)
	9.11.2.4 For a 4xx, the message body shall contain a SubscriptionsListErrorData structure, as defined in Annex A. (M)
	9.11.2.5 In the SubscriptionsListErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 9-7. (M)

	9.11.3 Subscription to location reporting channel
	9.11.3.1 The On-Board Application shall send a POST request to the /notifications/{dynamicId}/channels/location endpoint. (M)
	9.11.3.2 The POST request shall contain the LocNotifReqData structure as defined on Annex A. (M):
	9.11.3.3 On success, 200 (OK) shall be returned. (M)
	9.11.3.4 The “200 OK” response shall contain the LocNotifResData structure as defined in Annex A. (M)
	9.11.3.5 On failure, one of the HTTP status codes listed in Table 9-8 shall be returned.(M)
	9.11.3.6 For a 4xx, the message body shall contain a LocNotifErrorData structure, as defined in Annex A. (M)
	9.11.3.7 In the LocNotifErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 9-8. (M)
	9.11.3.8 <intentionally deleted>
	9.11.3.9 The SSE message for any of the locReportTypes shall contain a LocReportNotifData structure as defined in Annex A. (M)

	9.11.4 Unsubscription from notification channels
	9.11.4.1 The On-Board Application shall send a DELETE request to the /notifications/{dynamicId}/channels endpoint. (M)
	9.11.4.2 On success, 204 (No Content) shall be returned. (M)
	9.11.4.3 On failure, one of the HTTP status code listed in Table 9-9 shall be returned. (M)
	9.11.4.4 For a 4xx, the message body shall contain a UnsubChannelsErrorData structure, as defined in Annex A. (M)
	9.11.4.5 In the UnsubChannelsErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 9-9. (M)

	9.11.5 Unsubscription from a specific notification channel
	9.11.5.0 This clause specifies how an application can unsubcribe from a notification channel. The list of notification channels from which the application can unsubscribe is provided by Notifchannel data type in Annex A. (I)
	9.11.5.1 The On-Board Application shall send a DELETE request to the /notifications/{dynamicId}/channels/{channel} endpoint. (M)
	9.11.5.2 On success, 204 (No Content) shall be returned. (M)
	9.11.5.3 On failure, one of the HTTP status code listed in Table 9-10 shall be returned. (M)
	9.11.5.4 For a 4xx, the message body shall contain a UnsubNotifChannelErrorData structure, as defined in Annex A. (M)
	9.11.5.5 In the UnsubNotifChannelErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 9-10. (M)

	9.11.6 Unsubscription from a specific notification using subscription identity
	9.11.6.1 The On-Board Application shall send a DELETE request to the /notifications/{dynamicId}/channels/{subscriptionId} endpoint. (M)
	9.11.6.2 On success, 204 (No Content) shall be returned. (M)
	9.11.6.3 On failure, one of the HTTP status code listed in Table 9-11 shall be returned. (M)
	9.11.6.4 For a 4xx, the message body shall contain a UnsubNotificationErrorData structure as defined in Annex A. (M)
	9.11.6.5 In the UnsubNotificationErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 9-11. (M)

	9.12 Session services
	9.12.1 Opening a session for an application
	9.12.1.1 This section describes how to initiate a session for an application on OBapp. (I)
	9.12.1.2 The On-Board Application shall send a POST request to the /sessions/{dynamicId} endpoint. (M)
	9.12.1.3 The On-Board Application shall send OBSessionOpenData content as defined in Annex A in the POST request. (M)
	9.12.1.4 On success, 201 (Session Created) shall be returned. (M)
	9.12.1.5 The 201 (Session Created) response shall contain OBSessionOpenedData structure as defined in Annex A. (M)
	9.12.1.6 For a 4xx, the message body shall contain a OBSessionOpenErrorData structure as defined in Annex A. (M)
	9.12.1.7 In the OBSessionOpenErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 9-12. (M)

	9.12.2 Get a session status
	9.12.2.1 The On-Board Application shall send a Get request to the /sessions/{dynamicId}/{sessionId} endpoint. (M)
	9.12.2.2 On success, 200 (OK) shall be returned containing SessionStatusData structure as defined in Annex A. (M)
	9.12.2.3 On failure, one of the HTTP status codes listed in Table 9-13 shall be returned. (M)
	9.12.2.4 For a 4xx, the message body shall contain a SessionStatusErrorData structure, as defined in Annex A. (M)
	9.12.2.5 In the SessionStatusErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 9-13. (M)

	9.12.3 Get list of sessions for an application
	9.12.3.1 The On-Board Application shall send a Get request to the /sessions/{dynamicId} endpoint. (M)
	9.12.3.2 On success, 200 (OK) shall be returned containing the SessionsListData as defined in Annex A. (M)
	9.12.3.3 On failure, one of the HTTP status codes listed in Table 9-14 shall be returned. (M)
	9.12.3.4 For a 4xx, the message body shall contain a SessionsListErrorData structure, as defined in Annex A. (M)
	9.12.3.5 In the SessionsListErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 9-14. (M)

	9.12.4 Closures of a session
	9.12.4.1 The On-Board Application shall send a DELETE request to the /sessions/{dynamicId}/{sessionId} endpoint. (M)
	9.12.4.2 On success, 204 (No Content) shall be returned with the SessionClosedData structure as defined in Annex A. (M)
	9.12.4.3 On failure, one of the HTTP status codes listed in Table 9-15 shall be returned. (M)
	9.12.4.4 For a 4xx, the message body shall contain a SessionCloseErrorData structure, as defined in Annex A. (M)
	9.12.4.5 In the SessionCloseErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 9-15. (M)

	9.12.5 Accept an incoming session
	9.12.5.1 The On-Board Application shall send a PUT request to the /sessions/{dynamicId}/{sessionId} endpoint containing IncomingSessionNotificationResponseData structure as defined in Annex A. (M)
	9.12.5.2 On success, one of the status codes 2xx listed in Table 9-16 shall be returned. (M)
	9.12.5.3 <Intentionally Deleted>
	9.12.5.4 On failure, one of the HTTP status codes listed in Table 9-16 shall be returned.
	9.12.5.5 For a 4xx, the message body shall contain a IncomingSessionNotificationResponseErrorData structure, as defined in Annex A. (M)
	9.12.5.6 In the IncomingSessionNotificationResponseErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 9-16. (M)

	9.13 Keep alive service
	9.13.1 This API service allows an On-Board Application to get a life signal from On-Board FRMCS. (I)
	9.13.2 The On-Board Application shall send a GET request to the /keepalive/{dynamicId}/ endpoint. (M)
	9.13.3 On success, 204 (No Content) shall be returned.
	9.13.4 On failure, one of the HTTP status codes listed in Table 9-17 shall be returned. (M)
	9.13.5 For a 4xx, the message body shall contain a KeepAliveErrorData structure, as defined in Annex A. (M)
	9.13.6 In the KeepAliveErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 9-17. (M)

	9.14 <Intentionally Deleted>
	9.15 API support by On-Board FRMCS and On-Board Applications
	9.15.1 [FRMCS SRS] section 6.1.3.1 defines for which application the OBapp is applied. (I)
	9.15.2 The On-Board FRMCS shall implement and expose all API services provided for OBapp. (M)
	9.15.3 The following API services shall be implemented by all On-Board Applications: (M)
	9.15.4 The following API services shall be implemented by all On-Board Loose Coupled (LC) applications requiring OB-originated communications: (M)
	9.15.5 The following API services shall be implemented by all On-Board Loose Coupled (LC) applications requiring OB-terminated communications: (M)
	9.15.6 The Table 9-18 represents the mandatory part of API services for applications by “x” (I):

	9.16 <Intentionally Deleted>
	9.17 <Intentionally Deleted>

	10 TSAPP API Services
	10.1 Overview of TSAPP API features
	10.1.1 API version: This TSAPP service is used by Trackside Application to obtain the list of API version(s) supported by the FRMCS Trackside Gateway. (I)
	10.1.2 Local registration service: This TSAPP service is used to perform the Local registration between a Trackside Application and the FRMCS Trackside Gateway. (I)
	10.1.3 Local deregistration service: This TSAPP service is used to request a local de-registration of the Trackside Application from the FRMCS Trackside Gateway. (I)
	10.1.4 Session opening service: This TSAPP service is used to establish a session between a Trackside Application and a remote (Trackside or On-Board) application at the initiative of the Trackside Application. (I)
	10.1.5 Incoming session acceptance service: This TSAPP service is used as a part of the establishment of a session between a Trackside Application and a remote (Trackside or On-Board) application at the initiative of the remote application. (I)
	10.1.6 Session closure service: This TSAPP service is used to close a session between a Trackside Application and a remote application. (I)
	10.1.7 Session status service: This TSAPP service is used to provide the status of a session involving the Trackside Application (I)
	10.1.8 Subscription to notification event stream service: This feature is used to request the opening of an event stream enabling FRMCS Trackside Gateway to send notifications to the Trackside Application after the local registration. This is done du...
	10.1.9 General notification service: upon Trackside Application’s subscription to notification event stream, the Trackside Application receive a set of general notifications which are linked to the following events: (I)
	10.1.10 <Intentionally Deleted>
	10.1.11 The completion of Local Binding shall imply the successful execution of the following steps: (M)
	10.1.12 The invocation of any API services beside API version, local registration, and subscription to the notification event stream is conditioned on the successful execution of the Local Binding steps. (I)
	10.1.13 Mandatory TSAPP API services for different types of applications is covered in section 0. (I)

	10.2 Definition of the parameters used in the API services
	10.2.1 A comprehensive description of attributes and some basic data types used for TSAPP API services are provided in informative tables, Table 10-1 and Table 10-2, respectively. The data types are formally defined in ASN.1 format in the normative An...
	10.2.2 The TSAPP interface to the FRMCS Trackside Gateway will have different versions as new features will be introduced. Supported versions are communicated over the TSAPP. For each interface version, a change log is maintained, and changes are cate...
	10.2.3 The TSAPP API versioning is defined in clause 10.4. (I)
	10.2.3i For a TSAPP API implemented according to the present FFFIS, the API version shall be set to v0.1. (M)
	10.2.4 The dynamicId and sessionId shall be random cryptographic identities generated by FRMCS Trackside Gateway at runtime. (M)
	10.2.5 The appCategory, as defined in Annex B, allows a list of both harmonized and non-harmonized applications. (I)
	10.2.6 The field name for non-harmonized applications within appCategory shall include a prefix “ext.”, indicating non-harmonized extension of the application list. (M)
	10.2.7 The static identifier of the application shall be unique in the scope of all FRMCS application instances within an FRMCS Trackside Gateway. The structure of FRMCS System identities that are used to set up the relevant FRMCS services and communi...
	10.2.8 The remote address of an application in the scope of TSAPP session exchange messages shall fulfil the requirements as specified in the [FRMCS-SRS] section 11.6.5. (M)

	10.3 API URI
	10.3.1 The API URI of the TSAPP APIs shall be: {apiRoot}/<apiName>/<apiVersion>/<ResourceName>, with the following components:
	10.3.2 The localIdApiRoot is of string type with value being deployment-specific, such as the IP address of the FRMCS Trackside Gateway within the train IP network or a locally resolvable FQDN (if the train is equipped with a DNS server). (I)

	10.4 API version
	10.4.1 API version (represented by ApiVersion data type) shall be a string with format “v{MAJOR}.{MINOR}”. (M)
	10.4.2 The 1st Field (MAJOR) and the 2nd Field (MINOR) shall contain unsigned integer numbers, and they shall not contain leading zeroes. (M)
	10.4.3 Given the format of API version, the version increments follow the rules defined in the following clauses. (I)
	10.4.4 The 1st Field (MAJOR) shall be incremented only if the applied change is backward incompatible relative to the earlier, i.e. frozen version of the API. (M)
	10.4.5 For a non-frozen API, the first backwards incompatible change(s) relative to the latest frozen version triggers incrementing the 1st Field (MAJOR), while subsequent backwards incompatible changes do not increment the value, until the API stays ...
	10.4.6 The 2nd Field (MINOR) shall be incremented only if the applied change is a backward compatible new feature relative to the earlier, i.e. frozen version of the API. (M)
	10.4.7 For a non-frozen API, the first backwards compatible change(s) relative to the latest frozen version triggers incrementing the 2nd Field (MINOR), while subsequent backwards compatible changes do not increment the value, until the API stays non-...
	10.4.8 An Trackside Application which wants to communicate with FRMCS Trackside Gateway will priorly request the supported API version(s) by FRMCS Trackside Gateway as defined in clause 0. The Trackside Application will then use its selected API versi...

	10.5 Http and SSE usage
	10.5.1 HTTP/2, as defined in [RFC 9113], shall be used. (M)
	10.5.2 The data contained in the body of HTTP request, HTTP response, and in the Data filed of SSE message shall be encoded in JSON as specified in [RFC 8259]. (M)
	10.5.3 The use of the JSON format shall be signalled by the content type "application/json". (M)

	10.6 Resource names and HTTP methods
	10.6.1 Figure below describes the resource URI structure of the TSAPP API. (I)
	10.6.2 Table below provides an overview of the resources’ names and applicable HTTP methods. (I)

	10.7 API version service
	10.7.1 This API service allows an Trackside Application to obtain the supported version(s) of API by FRMCS Trackside Gateway and can be invoked without local registration. (I)
	10.7.2 The Trackside Application shall send a GET request to the {apiRoot}/tsapp/versions endpoint. (M)
	10.7.3 On success, 200 (OK) shall be returned with ApiVersionsData content as defined in Annex B. (M)
	10.7.4 The Trackside Application shall utilise one of the API versions among the list of supported versions by FRMCS Trackside Gateway as the apiVersion in the API URI (see clause 10.3) of its subsequent requests. (M)

	10.8 Local registration services
	10.8.1 Register a Trackside Application
	10.8.1.1 This API service allows an Trackside Application to register to the FRMCS Trackside Gateway and to obtain a unique identity (i.e., dynamicId) to be used in the API URI path of the subsequent requests. (I)
	10.8.1.2 The Trackside Application shall send a POST request to the /registrations endpoint. (M)
	10.8.1.3 The Trackside Application shall send RegisterData content as defined in Annex B in the POST request.(M)
	10.8.1.4 On success, 201 (Created) shall be returned, with Location header set to the URI of the registered application instance. (M)
	10.8.1.5 The 201 (Created) response shall contain RegisteredData structure as defined in Annex B. (M)
	10.8.1.6 On failure, one of the HTTP status codes listed in Table 10-3 shall be returned. (M)
	10.8.1.7 For a 4xx, the message body shall contain a RegisterErrorData structure as defined in Annex B. (M)
	10.8.1.8 In the RegisterErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 10-3. (M)

	10.8.2 De-Register an Trackside Application
	10.8.2.1 The Trackside Application shall send a DELETE request to the /registration/{dynamicId} endpoint. (M)
	10.8.2.2 On success, 204 (No Content) shall be returned. (M)
	10.8.2.3 On failure, one of the HTTP status code listed in Table 10-4 shall be returned. (M)
	10.8.2.4 For a 4xx, the message body shall contain a DeRegisterErrorData structure as defined in Annex B. (M)
	10.8.2.5 In the DeRegisterErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 10-4. (M)

	10.9 Notification services
	10.9.1 Opening the notification event stream for an application
	10.9.1.1 As a part of local binding an application subscribes to a notification event stream as defined in this clause. This notification event stream receives general notifications as well as the notifications from the notification channels to which ...
	10.9.1.2 The subscription to a notification event stream implicitly includes the subscription to a set of general notifications of the following types: OpenSessionFinalAnswerNotif (see clause 10.9.1.9), IncomingSessionNotif (see clause 10.9.1.10), Fs...
	10.9.1.3 The Trackside Application shall send a GET request to the /notifications/{dynamicId}/events endpoint. The following headers shall be set: (M)
	10.9.1.4 On success, 200 (OK) shall be returned, the following headers shall be set: (M)
	10.9.1.5 On failure, one of the HTTP status codes listed in Table 10-5 shall be returned. (M)
	10.9.1.6 For a 4xx, the message body shall contain a EventStreamErrorData structure as defined in Annex B. (M)
	10.9.1.7 In the EventStreamErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 10-5. (M)
	10.9.1.8 Following a successful subscription of an application to the notification event stream, the FRMCS Trackside Gateway shall send the SSE messages with the following field: (M)
	10.9.1.9 General event type “openSessionFinalAnswerNotif”
	10.9.1.9.1 The openSessionFinalAnswerNotif notifies to the application one of the 3 following statuses of E2E session: successful or failed or declined. (I)
	10.9.1.9.2 If the notification concerns a successful status, the SSE message for openSessionFinalAnswerNotif event shall contain a OpenSessionFinalAnswerNotifSuccessData structure as defined in Annex B.(M)
	10.9.1.9.3 If the notification concerns a declined status, The SSE message for openSessionFinalAnswerNotif event shall contain a OpenSessionFinalAnswerNotifDeclinedData structure as defined in Annex B and with cause set to one of the values in the cor...
	10.9.1.9.4 If the notification concerns a failed status, The SSE message for openSessionFinalAnswerNotif event shall contain a OpenSessionFinalAnswerNotifFailedData structure as defined in Annex B and with cause set to one of the values in the corresp...

	10.9.1.10 General event type “incomingSessionNotif”
	10.9.1.10.1 The SSE message for incomingSessionNotif event shall contain a IncomingSessionNotifData structure as defined in Annex B. (M)

	10.9.1.11 <intentionally deleted>
	10.9.1.12 General event type “fsdAvlNotif”
	10.9.1.12.1 The SSE message for fsdAvlNotif event shall contain a FsdAvlNotifData structure as defined in Annex B. (M)

	10.9.1.13 General event type “sessionClosureNotif”
	10.9.1.13.1 The SSE message for sessionClosureNotif event shall contain a SessionClosureNotifData structure as defined in Annex B. (M)

	10.9.1.14 General event type “upcomingDeregistrationNotif”
	10.9.1.14.1 The SSE message for upcomingDeregistrationNotif event shall contain a UpcomingDeregistrationNotifData structure as defined in Annex B. (M)

	10.9.2 <Intentionally Deleted>
	10.9.3 <Intentionally Deleted>
	10.9.4 <Intentionally Deleted>
	10.9.5 <Intentionally Deleted>

	10.10 Session services
	10.10.1 Opening a session for an application
	10.10.1.1 This section describes how to initiate a session for an application on TSAPP. (I)
	10.10.1.2 The Trackside Application shall send a POST request to the /sessions/{dynamicId} endpoint. (M)
	10.10.1.3 The Trackside Application shall send TSSessionOpenData content as defined in Annex B in the POST request. (M)
	10.10.1.4 On success, 201 (Session Created) shall be returned. (M)
	10.10.1.5 The 201 (Session Created) response shall contain TSSessionOpenedData structure as defined in Annex B. (M)
	10.10.1.6 On failure, one of the HTTP status codes listed in Table 10-7 shall be returned. (M)
	10.10.1.7 For a 4xx, the message body shall contain a TSSessionOpenErrorData structure as defined in Annex B. (M)
	10.10.1.8 In the TSSessionOpenErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 10-7. (M)

	10.10.2 Get a session status
	10.10.2.1 The Trackside Application shall send a Get request to the /sessions/{dynamicId}/{sessionId} endpoint. (M)
	10.10.2.2 On success, 200 (OK) shall be returned containing SessionStatusData structure as defined in Annex B. (M)
	10.10.2.3 On failure, one of the HTTP status codes listed in Table 10-8 shall be returned. (M)
	10.10.2.4 For a 4xx, the message body shall contain a SessionStatusErrorData structure, as defined in Annex B. (M)
	10.10.2.5 In the SessionStatusErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 10-8. (M)

	10.10.3 Get list of sessions for an application
	10.10.3.1 The Trackside Application shall send a Get request to the /sessions/{dynamicId} endpoint. (M)
	10.10.3.2 On success, 200 (OK) shall be returned containing the SessionsListData as defined in Annex B. (M)
	10.10.3.3 On failure, one of the HTTP status codes listed in Table 10-9 shall be returned. (M)
	10.10.3.4 For a 4xx, the message body shall contain a SessionsListErrorData structure, as defined in Annex B. (M)
	10.10.3.5 In the SessionsListErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 10-9. (M)

	10.10.4 Closures of a session
	10.10.4.1 The Trackside Application shall send a DELETE request to the /sessions/{dynamicId}/{sessionId} endpoint. (M)
	10.10.4.2 On success, 204 (No Content) shall be returned with the SessionClosedData structure as defined in Annex B. (M)
	10.10.4.3 On failure, one of the HTTP status codes listed in Table 10-10 shall be returned. (M)
	10.10.4.4 For a 4xx, the message body shall contain a SessionCloseErrorData structure, as defined in Annex B. (M)
	10.10.4.5 In the SessionCloseErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 10-10. (M)

	10.10.5 Accept an incoming session
	10.10.5.1 The Trackside Application shall send a PUT request to the /sessions/{dynamicId}/{sessionId} endpoint containing IncomingSessionNotificationResponseData structure as defined in Annex B. (M)
	10.10.5.2 On success, one of the status codes 2xx listed in Table 10-11 shall be returned. (M)
	10.10.5.3 <Intentionally Deleted>
	10.10.5.4 On failure, one of the HTTP status codes listed in Table 10-11 shall be returned.
	10.10.5.5 For a 4xx, the message body shall contain a IncomingSessionNotificationResponseErrorData structure, as defined in Annex B. (M)
	10.10.5.6 In the IncomingSessionNotificationResponseErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 10-11. (M)

	10.11 Keep alive service
	10.11.1 This API service allows an Trackside Application to get a life signal from FRMCS Trackside Gateway. (I)
	10.11.2 The Trackside Application shall send a GET request to the /keepalive/{dynamicId}/ endpoint. (M)
	10.11.3 On success, 204 (No Content) shall be returned.
	10.11.4 On failure, one of the HTTP status codes listed in Table 10-12 shall be returned. (M)
	10.11.5 For a 4xx, the message body shall contain a KeepAliveErrorData structure, as defined in Annex B. (M)
	10.11.6 In the KeepAliveErrorData of HTTP failure response, the uriResource shall be set to the revoked URI resource, and cause shall be set to the values in one of the rows of Table 10-12. (M)

	10.12 <Intentionally Deleted>
	10.13 API support by FRMCS Trackside Gateway and Trackside Applications
	10.13.1 [FRMCS SRS] section 6.1.3 defines for which application the TSAPP is applied. (I)
	10.13.2 The FRMCS TRACKSIDE GATEWAY shall implement and expose all API services provided for TSAPP. (M)
	10.13.3 The following API services shall be implemented by all Trackside Applications: (M)
	10.13.4 The following API services shall be implemented by all Trackside Loose Coupled (LC) applications requiring TS-originated communications: (M)
	10.13.5 The following API services shall be implemented by all Trackside Loose Coupled (LC) applications requiring TS-terminated communications: (M)
	10.13.6 The Table 10-13 represents the mandatory part of API services for applications by “x” (I):

	10.14 <Intentionally Deleted>
	10.15 <Intentionally Deleted>

	11 <Intentionally Deleted>
	Annex A. (Normative) ASN.1 notations of OBAPP parameters
	A.1 Basic Data Types
	A.2 OBapp parameters
	A.3 Data structures within OBapp message body text

	Annex B. (Normative) ASN.1 notations of TSAPP parameters
	B.1 Basic Data Types
	B.2 TSAPP parameters
	B.3 Data structures within TSAPP message body text

	Annex C. (Informative) Yaml codes of OBAPP
	Annex D. Interoperability requirements in EU

